論文の概要: Auto-Encoded Reservoir Computing for Turbulence Learning
- arxiv url: http://arxiv.org/abs/2012.10968v2
- Date: Wed, 24 Mar 2021 16:42:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 04:37:53.670509
- Title: Auto-Encoded Reservoir Computing for Turbulence Learning
- Title(参考訳): 乱流学習のための自動エンコード型貯留層計算
- Authors: Nguyen Anh Khoa Doan, Wolfgang Polifke, Luca Magri
- Abstract要約: 本稿では, 自動エンコード型貯留層計算(AE-RC)手法を用いて, 2次元乱流の力学を学習する。
AE-RCは、フロー状態の効率的な多様体表現を発見するオートエンコーダと、多様体内のフローの時間進化を学習するエコー状態ネットワークで構成される。
- 参考スコア(独自算出の注目度): 5.37133760455631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an Auto-Encoded Reservoir-Computing (AE-RC) approach to learn the
dynamics of a 2D turbulent flow. The AE-RC consists of an Autoencoder, which
discovers an efficient manifold representation of the flow state, and an Echo
State Network, which learns the time evolution of the flow in the manifold. The
AE-RC is able to both learn the time-accurate dynamics of the flow and predict
its first-order statistical moments. The AE-RC approach opens up new
possibilities for the spatio-temporal prediction of turbulence with machine
learning.
- Abstract(参考訳): 本稿では, 自動エンコード型貯留層計算(AE-RC)手法を用いて, 2次元乱流の力学を学習する。
AE-RCは、フロー状態の効率的な多様体表現を発見するオートエンコーダと、多様体内のフローの時間進化を学習するエコー状態ネットワークで構成される。
AE-RCは流れの時間精度のダイナミクスを学習し、その1次統計モーメントを予測できる。
AE-RCアプローチは、機械学習による乱流の時空間予測の新しい可能性を開く。
関連論文リスト
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - ARFA: An Asymmetric Receptive Field Autoencoder Model for Spatiotemporal
Prediction [55.30913411696375]
本稿では,非対称な受容場オートエンコーダ (ARFA) モデルを提案する。
エンコーダでは,大域的時間的特徴抽出のための大規模なカーネルモジュールを提案し,デコーダでは局所的時間的再構成のための小さなカーネルモジュールを開発する。
降水予測のための大規模レーダエコーデータセットであるRainBenchを構築し,その領域における気象データの不足に対処する。
論文 参考訳(メタデータ) (2023-09-01T07:55:53Z) - Machine Learning to Predict Aerodynamic Stall [0.0]
畳み込みオートエンコーダは、翼の空気力学シミュレーションのデータベースを用いて訓練される。
目的は, 屋台を予測し, 翼圧力分布の線形応答と非線形応答を区別するオートエンコーダの能力を調べることである。
論文 参考訳(メタデータ) (2022-07-07T16:50:10Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - CSFlow: Learning Optical Flow via Cross Strip Correlation for Autonomous
Driving [9.562270891742982]
クロスストリップ相関モジュール(CSC)と相関回帰初期化モジュール(CRI)
CSFlowは2つの新しいモジュールで構成されている。クロスストリップ相関モジュール(CSC)と相関回帰初期化モジュール(CRI)である。
論文 参考訳(メタデータ) (2022-02-02T08:17:45Z) - Wasserstein Flow Meets Replicator Dynamics: A Mean-Field Analysis of Representation Learning in Actor-Critic [137.04558017227583]
ニューラルネットワークによって強化されたアクター・クリティカル(AC)アルゴリズムは、近年、かなりの成功を収めている。
我々は,特徴量に基づくニューラルACの進化と収束について,平均場の観点から考察する。
神経性交流は,大域的最適政策をサブ線形速度で求める。
論文 参考訳(メタデータ) (2021-12-27T06:09:50Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
本稿では,ディープエンコーダ・デコーダ方式cnnの低次元潜在空間の適応チューニング法を提案する。
粒子加速器における時間変動荷電粒子ビームの特性を予測するためのアプローチを実証する。
論文 参考訳(メタデータ) (2021-05-08T03:50:45Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
本研究では, 波動に基づく深部畳み込みニューラルネットワーク(Deep CNN)を提案し, スパースプローブ車両軌道から高分解能交通速度のダイナミクスを推定する。
我々は,既存の学習に基づく推定手法の堅牢性を改善するために,運動波理論の原理を取り入れるための2つの重要なアプローチを導入する。
論文 参考訳(メタデータ) (2021-02-04T21:51:25Z) - Echo State Network for two-dimensional turbulent moist Rayleigh-B\'enard
convection [0.0]
モイストrayleigh-b'enard対流の進化を近似するためにエコー状態ネットワークを適用する。
我々のモデルは複雑なダイナミクスを学習することができると結論づける。
論文 参考訳(メタデータ) (2021-01-27T11:27:16Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Online learning of both state and dynamics using ensemble Kalman filters [0.0]
本稿では,オンライン上での動的および状態の双方,すなわち推定値を常に更新する可能性について検討する。
我々は,(i)グローバルなEnKF,(i)ローカルなEnKF,(iii)反復的なEnKFを通じて,オンラインのダイナミクスを学習することの意味を考察する。
次に,1次元,1スケール,2スケールのカオスロレンツモデルを用いて,これらの手法の有効性を数値的に検証し,精度を評価する。
論文 参考訳(メタデータ) (2020-06-06T13:19:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。