論文の概要: Variational Quantum Cloning: Improving Practicality for Quantum
Cryptanalysis
- arxiv url: http://arxiv.org/abs/2012.11424v1
- Date: Mon, 21 Dec 2020 15:28:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 06:41:55.542163
- Title: Variational Quantum Cloning: Improving Practicality for Quantum
Cryptanalysis
- Title(参考訳): 変分量子クローニング:量子クリプトアナリシスの実用性の向上
- Authors: Brian Coyle, Mina Doosti, Elham Kashefi, Niraj Kumar
- Abstract要約: 機械学習に基づく暗号解析アルゴリズムである変分量子クローニング(VQC)を提案する。
VQCは、敵が短深度量子回路で最適な(近似)クローニング戦略を得ることを可能にする。
量子クローニングとVQCの促進による2つのプロトコルの攻撃を例として導いた。
- 参考スコア(独自算出の注目度): 2.064612766965483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cryptanalysis on standard quantum cryptographic systems generally involves
finding optimal adversarial attack strategies on the underlying protocols. The
core principle of modelling quantum attacks in many cases reduces to the
adversary's ability to clone unknown quantum states which facilitates the
extraction of some meaningful secret information. Explicit optimal attack
strategies typically require high computational resources due to large circuit
depths or, in many cases, are unknown. In this work, we propose variational
quantum cloning (VQC), a quantum machine learning based cryptanalysis algorithm
which allows an adversary to obtain optimal (approximate) cloning strategies
with short depth quantum circuits, trained using hybrid classical-quantum
techniques. The algorithm contains operationally meaningful cost functions with
theoretical guarantees, quantum circuit structure learning and gradient descent
based optimisation. Our approach enables the end-to-end discovery of hardware
efficient quantum circuits to clone specific families of quantum states, which
in turn leads to an improvement in cloning fidelites when implemented on
quantum hardware: the Rigetti Aspen chip. Finally, we connect these results to
quantum cryptographic primitives, in particular quantum coin flipping. We
derive attacks on two protocols as examples, based on quantum cloning and
facilitated by VQC. As a result, our algorithm can improve near term attacks on
these protocols, using approximate quantum cloning as a resource.
- Abstract(参考訳): 標準的な量子暗号システムにおけるクリプトアナリシスは、一般に、基盤となるプロトコル上で最適な敵攻撃戦略を見つけることを伴う。
多くの場合、量子攻撃をモデル化する基本原理は、いくつかの意味のある秘密情報の抽出を容易にする未知の量子状態のクローン化能力に還元される。
明示的な最適な攻撃戦略は一般に大きな回路深度のために高い計算資源を必要とするか、多くの場合不明である。
本研究では,量子機械学習に基づく暗号解析アルゴリズムである変分量子クローニング(VQC)を提案する。
このアルゴリズムは、理論的保証、量子回路構造学習、勾配降下に基づく最適化を含む運用上の有意義なコスト関数を含む。
この手法により,量子状態の特定の族をクローンするハードウェア効率の良い量子回路をエンドツーエンドで発見することが可能となり,量子ハードウェア上で実装されたfideliteのクローン化が改善される。
最後に、これらの結果を量子暗号プリミティブ、特に量子コインの反転に結びつける。
量子クローニングとVQCの促進による2つのプロトコルの攻撃を例として導いた。
その結果、近似量子クローニングを資源として、これらのプロトコルの短期攻撃を改善することができる。
関連論文リスト
- Quantum Indistinguishable Obfuscation via Quantum Circuit Equivalence [6.769315201275599]
量子コンピューティングソリューションは、委譲されたコンピューティングを通じて、ますます商用環境にデプロイされている。
最も重要な問題の1つは、量子実装の秘密性とプロプライエタリ性を保証することである。
汎用不特定性難読化(iO)と機能暗号化スキームの提案以来、iOは一見汎用的な暗号プリミティブとして登場してきた。
論文 参考訳(メタデータ) (2024-11-19T07:37:24Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Truncated Differential and Boomerang Attack [10.853582091917236]
本稿では,truncated differential と boomerang cryptanalysis に焦点をあてる。
まず、対称暗号の切り詰められた微分を求めるために設計された量子アルゴリズムを提案する。
我々は、圧倒的な確率で、我々のアルゴリズムによって出力される切り離された微分は、キー空間のキーの大部分に対して高い差分確率を持つ必要があることを証明した。
論文 参考訳(メタデータ) (2024-07-21T11:34:29Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
ボソニックモード超伝導回路におけるコヒーレント状態量子プロセストモグラフィ(csQPT)の使用を実証する。
符号化量子ビット上の変位とSNAP演算を用いて構築した論理量子ゲートを特徴付けることにより,本手法の結果を示す。
論文 参考訳(メタデータ) (2023-03-02T18:08:08Z) - Photon-phonon quantum cloning in optomechanical system [5.317893030884531]
記憶中の固体量子ビットからのさらなる処理のためのフライングビットのクローニングは、量子情報処理で頻繁に使用される操作である。
固体ビットとフライングビット間の高忠実かつ制御可能な量子クローニング法を提案する。
論文 参考訳(メタデータ) (2023-02-11T10:09:53Z) - Unclonability and Quantum Cryptanalysis: From Foundations to
Applications [0.0]
不規則性(Unclonability)は、量子理論の基本概念であり、量子情報の主要な非古典的性質の1つである。
我々は、量子世界、すなわち量子物理学的不閉性(quantum physical unclonability)という新しい非閉性の概念を導入する。
本稿では、暗号資源として、この新しいタイプの無拘束性(unclonability)のいくつかの応用について論じ、確実に安全な量子プロトコルを設計する。
論文 参考訳(メタデータ) (2022-10-31T17:57:09Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。