論文の概要: Confronting Abusive Language Online: A Survey from the Ethical and Human
Rights Perspective
- arxiv url: http://arxiv.org/abs/2012.12305v1
- Date: Tue, 22 Dec 2020 19:27:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 07:42:46.832654
- Title: Confronting Abusive Language Online: A Survey from the Ethical and Human
Rights Perspective
- Title(参考訳): オンラインの虐待的言語に直面する--倫理的・人権的な視点から
- Authors: Svetlana Kiritchenko, Isar Nejadgholi, Kathleen C. Fraser
- Abstract要約: 我々は,nlpによる自動乱用検出に関する大規模な研究を,倫理的課題に焦点を絞ってレビューする。
我々は、この技術の幅広い社会的影響を調べる必要性を強調している。
我々は、オンライン乱用を検知し対処するための、権利を尊重する社会技術的ソリューションのいくつかの機会を特定した。
- 参考スコア(独自算出の注目度): 4.916009028580767
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The pervasiveness of abusive content on the internet can lead to severe
psychological and physical harm. Significant effort in Natural Language
Processing (NLP) research has been devoted to addressing this problem through
abusive content detection and related sub-areas, such as the detection of hate
speech, toxicity, cyberbullying, etc. Although current technologies achieve
high classification performance in research studies, it has been observed that
the real-life application of this technology can cause unintended harms, such
as the silencing of under-represented groups. We review a large body of NLP
research on automatic abuse detection with a new focus on ethical challenges,
organized around eight established ethical principles: privacy, accountability,
safety and security, transparency and explainability, fairness and
non-discrimination, human control of technology, professional responsibility,
and promotion of human values. In many cases, these principles relate not only
to situational ethical codes, which may be context-dependent, but are in fact
connected to universal human rights, such as the right to privacy, freedom from
discrimination, and freedom of expression. We highlight the need to examine the
broad social impacts of this technology, and to bring ethical and human rights
considerations to every stage of the application life-cycle, from task
formulation and dataset design, to model training and evaluation, to
application deployment. Guided by these principles, we identify several
opportunities for rights-respecting, socio-technical solutions to detect and
confront online abuse, including 'nudging', 'quarantining', value sensitive
design, counter-narratives, style transfer, and AI-driven public education
applications.
- Abstract(参考訳): インターネット上の虐待的なコンテンツが広まると、深刻な心理的・身体的被害につながる可能性がある。
自然言語処理(NLP)研究における重要な取り組みは、ヘイトスピーチの検出、毒性、サイバーいじめなど、乱暴なコンテンツ検出と関連するサブアリーナを通じてこの問題に対処することに集中している。
現在の技術は研究において高い分類性能を達成しているが、この技術の実際の応用は、非表現群のサイレンシングのような意図しない害を引き起こす可能性があることが観察されている。
我々は, プライバシー, 説明責任, 安全と安全, 透明性と説明責任, 公正と非差別, 技術制御, 専門的責任, 人的価値の促進という, 8つの確立した倫理的原則を中心に組織された倫理的課題に焦点をあてた, 自動乱用検出に関する大規模なnlp研究をレビューした。
多くの場合、これらの原則は文脈に依存しているかもしれない状況的倫理規範だけでなく、実際にはプライバシーの権利、差別の自由、表現の自由など、普遍的な人権と結びついている。
我々は、この技術の幅広い社会的影響を検証し、タスクの定式化やデータセットの設計、モデルのトレーニングと評価、アプリケーションデプロイメントまで、アプリケーションライフサイクルのあらゆる段階に倫理的および人権上の考慮をもたらす必要性を強調します。
これらの原則により、我々は、「ナッジ」、「隔離」、価値に敏感なデザイン、反ナラティブ、スタイル移行、AI駆動の公共教育アプリケーションなど、オンライン虐待を検出し、対決する権利を尊重する社会技術ソリューションの機会を特定します。
関連論文リスト
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - Understanding Mental Health Content on Social Media and Its Effect Towards Suicidal Ideation [0.0]
この研究は、膨大な量のソーシャルメディアデータを分析して言語パターンを検出するために、これらの技術の応用について詳述している。
自殺予防にこれらの技術を用いる際の現実の有効性、限界、倫理的考察を評価する。
論文 参考訳(メタデータ) (2025-01-16T05:46:27Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Transparency, Security, and Workplace Training & Awareness in the Age of Generative AI [0.0]
AI技術の進歩に伴い、倫理的考慮、透明性、データのプライバシー、そして人間の労働への影響は、イノベーションと効率の推進力と交差する。
我々の研究は、主流の精査から離れて、しばしば周辺で機能する公開アクセス可能な大規模言語モデル(LLM)を探索する。
具体的には、制限のないコミュニケーションとプライバシを中心としたプラットフォームであるGab AIを調べ、検閲なしで自由に対話できるようにします。
論文 参考訳(メタデータ) (2024-12-19T17:40:58Z) - Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
私は、責任と倫理的AIを促進する努力が、確立された文脈規範に対するこの軽視に必然的に貢献し、正当化することができると論じます。
私は、道徳的保護よりも道徳的革新のAI倫理における現在の狭い優先順位付けに疑問を呈する。
論文 参考訳(メタデータ) (2024-12-06T15:36:13Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Applications of Generative AI in Healthcare: algorithmic, ethical, legal and societal considerations [0.0]
生成AIは、医療画像とテキスト分析を急速に変換している。
本稿では,正確性,インフォームドコンセント,データプライバシ,アルゴリズム制限の問題について検討する。
我々は、医療における生成AIの倫理的かつ責任ある実装のロードマップを策定することを目指している。
論文 参考訳(メタデータ) (2024-06-15T13:28:07Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Case Study: Deontological Ethics in NLP [119.53038547411062]
我々はNLPの観点から1つの倫理理論、すなわち非オントロジー的倫理について研究する。
特に、インフォームド・コンセントを通じて、一般化原則と自律性への敬意に焦点を当てる。
NLPシステムでこれらの原則をどのように利用できるかを示すための4つのケーススタディを提供する。
論文 参考訳(メタデータ) (2020-10-09T16:04:51Z) - A survey of algorithmic recourse: definitions, formulations, solutions,
and prospects [24.615500469071183]
我々は、自動意思決定システムによって不当に扱われる個人に対して、説明とレコメンデーションを提供するアルゴリズムの講義に焦点をあてる。
我々は、広範な文献レビューを行い、統一された定義、定式化、言論への解決策を提示することで、多くの著者の努力を一致させます。
論文 参考訳(メタデータ) (2020-10-08T15:15:34Z) - Designing for Human Rights in AI [0.0]
AIシステムは、エビデンス駆動で効率的な決定を下すのに役立ちます。
これらの技術開発が人々の基本的人権と一致していることは明らかになっている。
これらの複雑な社会倫理問題に対する技術的な解決策は、しばしば社会的文脈の実証的研究なしで開発される。
論文 参考訳(メタデータ) (2020-05-11T09:21:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。