On Enhancing Brain Tumor Segmentation Across Diverse Populations with Convolutional Neural Networks
- URL: http://arxiv.org/abs/2405.02852v1
- Date: Sun, 5 May 2024 08:55:00 GMT
- Title: On Enhancing Brain Tumor Segmentation Across Diverse Populations with Convolutional Neural Networks
- Authors: Fadillah Maani, Anees Ur Rehman Hashmi, Numan Saeed, Mohammad Yaqub,
- Abstract summary: This work proposes a brain tumor segmentation method as part of the BraTS-GoAT challenge.
The task is to segment tumors in brain MRI scans automatically from various populations, such as adults, pediatrics, and underserved sub-Saharan Africa.
Our experiments show that our method performs well on the unseen validation set with an average DSC of 85.54% and HD95 of 27.88.
- Score: 0.9304666952022026
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Brain tumor segmentation is a fundamental step in assessing a patient's cancer progression. However, manual segmentation demands significant expert time to identify tumors in 3D multimodal brain MRI scans accurately. This reliance on manual segmentation makes the process prone to intra- and inter-observer variability. This work proposes a brain tumor segmentation method as part of the BraTS-GoAT challenge. The task is to segment tumors in brain MRI scans automatically from various populations, such as adults, pediatrics, and underserved sub-Saharan Africa. We employ a recent CNN architecture for medical image segmentation, namely MedNeXt, as our baseline, and we implement extensive model ensembling and postprocessing for inference. Our experiments show that our method performs well on the unseen validation set with an average DSC of 85.54% and HD95 of 27.88. The code is available on https://github.com/BioMedIA-MBZUAI/BraTS2024_BioMedIAMBZ.
Related papers
- Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients.
Various deep learning-based techniques have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology.
We propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation.
arXiv Detail & Related papers (2024-05-22T02:46:26Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
Manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task.
Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation.
arXiv Detail & Related papers (2020-12-22T23:16:43Z) - Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge [53.48285637256203]
iSeg 2019 challenge provides a set of 6-month infant subjects from multiple sites with different protocols/scanners for the participating methods.
By the time of writing, there are 30 automatic segmentation methods participating in iSeg 2019.
We review the 8 top-ranked teams by detailing their pipelines/implementations, presenting experimental results and evaluating performance in terms of the whole brain, regions of interest, and gyral landmark curves.
arXiv Detail & Related papers (2020-07-04T13:39:48Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
We propose a fast, automated method, with light computational complexity, to find the smallest bounding box around the tumor region.
This region-of-interest can be used as a preprocessing step in training networks for subregion tumor segmentation.
The proposed method is evaluated on the BraTS 2015 dataset, and the average gained DICE score is 0.73, which is an acceptable result for this application.
arXiv Detail & Related papers (2020-02-26T14:10:40Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z) - Transfer Learning for Brain Tumor Segmentation [0.6408773096179187]
Gliomas are the most common malignant brain tumors that are treated with chemoradiotherapy and surgery.
Recent advances in deep learning have led to convolutional neural network architectures that excel at various visual recognition tasks.
In this work, we construct FCNs with pretrained convolutional encoders. We show that we can stabilize the training process this way and achieve an improvement with respect to dice scores and Hausdorff distances.
arXiv Detail & Related papers (2019-12-28T12:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.