Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query
Embedding
- URL: http://arxiv.org/abs/2212.02014v2
- Date: Tue, 10 Oct 2023 10:03:24 GMT
- Title: Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query
Embedding
- Authors: Heng Guo, Jianfeng Zhang, Ke Yan, Le Lu, Minfeng Xu
- Abstract summary: We propose a steerable, robust, and efficient computing framework for detection, identification, and segmentation of anatomies in 3D medical data.
Considering complicated shapes, sizes and orientations of anatomies, we present the nine degrees-of-freedom (9-DoF) pose estimation solution in full 3D space.
We have validated the proposed method on three medical imaging parsing tasks of ribs, spine, and abdominal organs.
- Score: 15.98677736544302
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Automatic parsing of human anatomies at instance-level from 3D computed
tomography (CT) scans is a prerequisite step for many clinical applications.
The presence of pathologies, broken structures or limited field-of-view (FOV)
all can make anatomy parsing algorithms vulnerable. In this work, we explore
how to exploit and conduct the prosperous detection-then-segmentation paradigm
in 3D medical data, and propose a steerable, robust, and efficient computing
framework for detection, identification, and segmentation of anatomies in CT
scans. Considering complicated shapes, sizes and orientations of anatomies,
without lose of generality, we present the nine degrees-of-freedom (9-DoF) pose
estimation solution in full 3D space using a novel single-stage,
non-hierarchical forward representation. Our whole framework is executed in a
steerable manner where any anatomy of interest can be directly retrieved to
further boost the inference efficiency. We have validated the proposed method
on three medical imaging parsing tasks of ribs, spine, and abdominal organs.
For rib parsing, CT scans have been annotated at the rib instance-level for
quantitative evaluation, similarly for spine vertebrae and abdominal organs.
Extensive experiments on 9-DoF box detection and rib instance segmentation
demonstrate the effectiveness of our framework (with the identification rate of
97.0% and the segmentation Dice score of 90.9%) in high efficiency, compared
favorably against several strong baselines (e.g., CenterNet, FCOS, and
nnU-Net). For spine identification and segmentation, our method achieves a new
state-of-the-art result on the public CTSpine1K dataset. Last, we report highly
competitive results in multi-organ segmentation at FLARE22 competition. Our
annotations, code and models will be made publicly available at:
https://github.com/alibaba-damo-academy/Med_Query.
Related papers
- CTARR: A fast and robust method for identifying anatomical regions on CT images via atlas registration [0.09130220606101362]
We introduce CTARR, a novel generic method for CT Anatomical Region Recognition.
The method serves as a pre-processing step for any deep learning-based CT image analysis pipeline.
Our proposed method is based on atlas registration and provides a fast and robust way to crop any anatomical region encoded as one or multiple bounding box(es) from any unlabeled CT scan.
arXiv Detail & Related papers (2024-10-03T08:52:21Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - RibSeg Dataset and Strong Point Cloud Baselines for Rib Segmentation
from CT Scans [62.16198969529679]
Manual rib inspections in computed tomography (CT) scans are clinically critical but labor-intensive.
We develop a labeled rib segmentation benchmark, named emphRibSeg, including 490 CT scans (11,719 individual ribs) from a public dataset.
We thresholded and sampled sparse voxels from the input and designed a point cloud-based baseline method for rib segmentation.
arXiv Detail & Related papers (2021-09-17T16:17:35Z) - COVID-19 identification from volumetric chest CT scans using a
progressively resized 3D-CNN incorporating segmentation, augmentation, and
class-rebalancing [4.446085353384894]
COVID-19 is a global pandemic disease overgrowing worldwide.
Computer-aided screening tools with greater sensitivity is imperative for disease diagnosis and prognosis.
This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach.
arXiv Detail & Related papers (2021-02-11T18:16:18Z) - Multi-class probabilistic atlas-based whole heart segmentation method in
cardiac CT and MRI [4.144197343838299]
This article proposes a framework for multi-class whole heart segmentation employing non-rigid registration-based probabilistic atlas.
We also propose a non-rigid registration pipeline utilizing a multi-resolution strategy for obtaining the highest attainable mutual information.
The proposed approach exhibits an encouraging achievement, yielding a mean volume overlapping error of 14.5 % for CT scans.
arXiv Detail & Related papers (2021-02-03T01:02:09Z) - RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random
Anatomical Prior [4.177877537413942]
coarse-to-fine abdominal multi-organ segmentation facilitates to extract high-resolution segmentation.
We propose a single refined model to segment all abdominal organs instead of multiple organ corresponding models.
Our proposed method outperforms the state-of-the-art on 13 models with an average Dice score 84.58% versus 81.69% (p0.0001)
arXiv Detail & Related papers (2020-12-23T00:22:05Z) - 3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass
Segmentation, Diagnosis, and Quantitative Patient Management [21.788423806147378]
We exploit the feasibility to distinguish pancreatic ductal adenocarcinoma (PDAC) from the nine other nonPDAC masses using multi-phase CT imaging.
We propose a holistic segmentation-mesh-classification network (SMCN) to provide patient-level diagnosis.
arXiv Detail & Related papers (2020-12-08T19:38:01Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.