論文の概要: Overview of FPGA deep learning acceleration based on convolutional
neural network
- arxiv url: http://arxiv.org/abs/2012.12634v1
- Date: Wed, 23 Dec 2020 12:44:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 00:17:45.580077
- Title: Overview of FPGA deep learning acceleration based on convolutional
neural network
- Title(参考訳): 畳み込みニューラルネットワークに基づくFPGA深層学習加速の概観
- Authors: Simin Liu
- Abstract要約: 近年、ディープラーニングはますます成熟し、ディープラーニングの一般的なアルゴリズムとして、畳み込みニューラルネットワークは様々な視覚的タスクで広く使用されています。
本稿は,畳み込みの関連理論とアルゴリズムを主に紹介するレビュー記事である。
畳み込みニューラルネットワークに基づく既存のFPGA技術の応用シナリオをまとめ、主にアクセラレータの応用について紹介します。
- 参考スコア(独自算出の注目度): 0.76146285961466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep learning has become more and more mature, and as a
commonly used algorithm in deep learning, convolutional neural networks have
been widely used in various visual tasks. In the past, research based on deep
learning algorithms mainly relied on hardware such as GPUs and CPUs. However,
with the increasing development of FPGAs, both field programmable logic gate
arrays, it has become the main implementation hardware platform that combines
various neural network deep learning algorithms This article is a review
article, which mainly introduces the related theories and algorithms of
convolution. It summarizes the application scenarios of several existing FPGA
technologies based on convolutional neural networks, and mainly introduces the
application of accelerators. At the same time, it summarizes some accelerators'
under-utilization of logic resources or under-utilization of memory bandwidth,
so that they can't get the best performance.
- Abstract(参考訳): 近年、ディープラーニングはますます成熟し、ディープラーニングの一般的なアルゴリズムとして、畳み込みニューラルネットワークは様々な視覚的タスクで広く使われている。
これまでは、ディープラーニングアルゴリズムに基づく研究は主にGPUやCPUなどのハードウェアに依存していた。
しかし、FPGAやフィールドプログラマブルな論理ゲートアレイの発展に伴い、様々なニューラルネットワーク深層学習アルゴリズムを組み合わせたハードウェアプラットフォームとして実装され、主に畳み込みの理論とアルゴリズムを紹介するレビュー記事である。
畳み込みニューラルネットワークに基づく既存のFPGA技術の応用シナリオを要約し、主に加速器の応用を紹介する。
同時に、いくつかのアクセラレータのロジックリソースの過小利用やメモリ帯域の過小利用を要約し、最高のパフォーマンスを得ることができないようにしている。
関連論文リスト
- HAPM -- Hardware Aware Pruning Method for CNN hardware accelerators in resource constrained devices [44.99833362998488]
本研究はFPGAデバイスに実装可能な汎用ハードウェアアーキテクチャを提案する。
設計の推論速度は、リソース制約の異なるFPGAデバイス上で評価される。
ハードウェア対応プルーニングアルゴリズムは,標準アルゴリズムを用いたネットワークプルーニングに比べて,推論時間45%の顕著な改善を実現していることを示す。
論文 参考訳(メタデータ) (2024-08-26T07:27:12Z) - Harnessing FPGA Technology for Enhanced Biomedical Computation [0.0]
この研究は、CNN、Recurrent Neural Networks (RNN)、Long Short-Term Memory Networks (LSTMs)、Deep Belief Networks (DBNs)のような洗練されたニューラルネットワークフレームワークを掘り下げる。
レイテンシやスループットなどの性能指標を評価することにより,高度なバイオメディカルコンピューティングにおけるFPGAの有効性を示す。
論文 参考訳(メタデータ) (2023-11-21T08:51:58Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
本研究では、フィールドプログラマブルゲートアレイ(FPGA)を用いたECG信号解析のための高度なニューラルネットワークアーキテクチャを提案する。
我々は、トレーニングと検証にMIT-BIH Arrhythmia Databaseを使用し、堅牢性を改善するためにガウスノイズを導入した。
この研究は最終的に、様々なアプリケーションのためのFPGA上でのニューラルネットワーク性能を最適化するためのガイドを提供する。
論文 参考訳(メタデータ) (2023-07-16T01:20:17Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
ランダム関数リンクニューラルネットワーク(RFLNN)は、深い構造を学習する別の方法を提供する。
本稿では周波数領域の観点からRFLNNの特性について考察する。
本稿では,より優れた性能でBLSネットワークを生成する手法を提案し,ポゾン方程式を解くための効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-04-03T13:25:22Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - E3NE: An End-to-End Framework for Accelerating Spiking Neural Networks
with Emerging Neural Encoding on FPGAs [6.047137174639418]
エンドツーエンドフレームワークのE3NEはFPGAのための効率的なSNN推論ロジックを生成する。
E3NEはハードウェアリソースの50%未満を消費し、20%の電力を消費する一方で、レイテンシを桁違いに低減する。
論文 参考訳(メタデータ) (2021-11-19T04:01:19Z) - Learning on Hardware: A Tutorial on Neural Network Accelerators and
Co-Processors [0.0]
ディープニューラルネットワーク(dnn)は、複雑なタスクを解決可能にするために、多くのパラメータを考慮に入れることができるという利点がある。
コンピュータビジョンや音声認識では、一般的なアルゴリズムよりも精度が高く、タスクによっては人間の専門家よりも精度が高いものもあります。
近年のDNNの進展に伴い、疾患の診断や自動運転など、多くの応用分野が活用されています。
論文 参考訳(メタデータ) (2021-04-19T12:50:27Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
オートエンコーダを用いた低ランクフィルタ共有技術(ALF)を提案する。
ALFは、ネットワークパラメータの70%、オペレーションの61%、実行時間の41%を削減し、精度の低下を最小限にしている。
論文 参考訳(メタデータ) (2020-07-27T09:01:22Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
大規模検索空間を対象とした進化グラフ強化学習(EGRL)を提案する。
我々は、推論のために、Intel NNP-Iチップ上で、我々のアプローチを直接訓練し、検証する。
また,NNP-Iコンパイラと比較して28~78%の高速化を実現している。
論文 参考訳(メタデータ) (2020-07-14T18:50:12Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。