論文の概要: FPGA-based Acceleration for Convolutional Neural Networks: A Comprehensive Review
- arxiv url: http://arxiv.org/abs/2505.13461v1
- Date: Sun, 04 May 2025 04:03:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-25 10:52:49.04698
- Title: FPGA-based Acceleration for Convolutional Neural Networks: A Comprehensive Review
- Title(参考訳): FPGAによる畳み込みニューラルネットワークの高速化:包括的レビュー
- Authors: Junye Jiang, Yaan Zhou, Yuanhao Gong, Haoxuan Yuan, Shuanglong Liu,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、ディープラーニングの基本であり、さまざまなドメインにわたるアプリケーションを駆動する。
本稿では、CNN用に特別に設計されたFPGAベースのハードウェアアクセラレータの包括的なレビューを提供する。
- 参考スコア(独自算出の注目度): 3.7810245817090906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNNs) are fundamental to deep learning, driving applications across various domains. However, their growing complexity has significantly increased computational demands, necessitating efficient hardware accelerators. Field-Programmable Gate Arrays (FPGAs) have emerged as a leading solution, offering reconfigurability, parallelism, and energy efficiency. This paper provides a comprehensive review of FPGA-based hardware accelerators specifically designed for CNNs. It presents and summarizes the performance evaluation framework grounded in existing studies and explores key optimization strategies, such as parallel computing, dataflow optimization, and hardware-software co-design. It also compares various FPGA architectures in terms of latency, throughput, compute efficiency, power consumption, and resource utilization. Finally, the paper highlights future challenges and opportunities, emphasizing the potential for continued innovation in this field.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、ディープラーニングの基本であり、さまざまなドメインにわたるアプリケーションを駆動する。
しかし、その複雑さの増大は計算要求を大幅に増加させ、効率的なハードウェアアクセラレータを必要とする。
FPGA(Field-Programmable Gate Array)は、再構成性、並列性、エネルギー効率を提供する主要なソリューションとして登場した。
本稿では、CNN用に特別に設計されたFPGAベースのハードウェアアクセラレータの包括的なレビューを提供する。
既存の研究に根ざしたパフォーマンス評価フレームワークを提示し、並列コンピューティング、データフロー最適化、ハードウェアとソフトウェアの共同設計といった重要な最適化戦略を探求する。
また、レイテンシ、スループット、計算効率、消費電力、リソース利用の観点から、さまざまなFPGAアーキテクチャを比較する。
最後に、この分野での継続的なイノベーションの可能性を強調し、今後の課題と機会を強調します。
関連論文リスト
- HAPM -- Hardware Aware Pruning Method for CNN hardware accelerators in resource constrained devices [44.99833362998488]
本研究はFPGAデバイスに実装可能な汎用ハードウェアアーキテクチャを提案する。
設計の推論速度は、リソース制約の異なるFPGAデバイス上で評価される。
ハードウェア対応プルーニングアルゴリズムは,標準アルゴリズムを用いたネットワークプルーニングに比べて,推論時間45%の顕著な改善を実現していることを示す。
論文 参考訳(メタデータ) (2024-08-26T07:27:12Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) はコンピュータビジョンコミュニティにおいて最も普及しているバックボーンネットワークの1つである。
本稿では,AdaLog(Adaptive Logarithm AdaLog)量子化器を提案する。
論文 参考訳(メタデータ) (2024-07-17T18:38:48Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
本稿では,フィールドプログラマブルゲートアレイ(FPGA)ベースのアクセラレータを効率よく生成するアルゴリズムとハードウェアの共同設計フレームワークを提案する。
アルゴリズムレベルでは、計算とメモリのオーバーヘッドを低減した、新しいマルチエグジット・ドロップアウトベースのベイズNNを提案する。
ハードウェアレベルでは,提案する効率的なベイズNNのためのFPGAベースのアクセラレータを生成するための変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-20T17:08:42Z) - SupeRBNN: Randomized Binary Neural Network Using Adiabatic
Superconductor Josephson Devices [44.440915387556544]
AQFPデバイスはバイナリニューラルネットワーク(BNN)計算の優れたキャリアとして機能する。
本稿では,AQFPに基づくランダム化BNNアクセラレーションフレームワークSupeRBNNを提案する。
本稿では,ReRAMベースのBNNフレームワークのエネルギー効率を約7.8×104倍に向上することを示す。
論文 参考訳(メタデータ) (2023-09-21T16:14:42Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
本研究では、フィールドプログラマブルゲートアレイ(FPGA)を用いたECG信号解析のための高度なニューラルネットワークアーキテクチャを提案する。
我々は、トレーニングと検証にMIT-BIH Arrhythmia Databaseを使用し、堅牢性を改善するためにガウスノイズを導入した。
この研究は最終的に、様々なアプリケーションのためのFPGA上でのニューラルネットワーク性能を最適化するためのガイドを提供する。
論文 参考訳(メタデータ) (2023-07-16T01:20:17Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
本研究は,粒子検出器のための低グラフニューラルネットワーク(LL-GNN)設計のための新しい再構成可能なアーキテクチャを提案する。
LL-GNNの設計は、洗練されたアルゴリズムが実験データを効率的に処理できるようにすることで、次世代のトリガーシステムを進化させる。
論文 参考訳(メタデータ) (2022-09-28T12:55:35Z) - Optimization of FPGA-based CNN Accelerators Using Metaheuristics [1.854931308524932]
畳み込みニューラルネットワーク(CNN)は、多くの分野における問題解決能力を実証している。
FPGAはCNN推論を加速する関心が高まっている。
FPGAベースのCNNアクセラレータの現在のトレンドは、複数の畳み込み層プロセッサ(CLP)を実装することである。
論文 参考訳(メタデータ) (2022-09-22T18:57:49Z) - Hardware-Efficient Deconvolution-Based GAN for Edge Computing [1.5229257192293197]
Generative Adversarial Networks (GAN) は、学習したデータ分布に基づいて新しいデータサンプルを生成する最先端のアルゴリズムである。
我々は、スケーラブルなストリーミングデータフローアーキテクチャを用いてFPGA上に実装された量子化デコンボリューションGAN(QDCGAN)のトレーニングのためのHW/SW共同設計手法を提案する。
リソース制約のあるプラットフォーム上での低消費電力推論のために,様々な精度,データセット,ネットワークスケーラビリティを解析した。
論文 参考訳(メタデータ) (2022-01-18T11:16:59Z) - Overview of FPGA deep learning acceleration based on convolutional
neural network [0.76146285961466]
近年、ディープラーニングはますます成熟し、ディープラーニングの一般的なアルゴリズムとして、畳み込みニューラルネットワークは様々な視覚的タスクで広く使用されています。
本稿は,畳み込みの関連理論とアルゴリズムを主に紹介するレビュー記事である。
畳み込みニューラルネットワークに基づく既存のFPGA技術の応用シナリオをまとめ、主にアクセラレータの応用について紹介します。
論文 参考訳(メタデータ) (2020-12-23T12:44:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。