論文の概要: Prognostic Power of Texture Based Morphological Operations in a
Radiomics Study for Lung Cancer
- arxiv url: http://arxiv.org/abs/2012.12652v1
- Date: Wed, 23 Dec 2020 13:38:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-26 00:02:03.752635
- Title: Prognostic Power of Texture Based Morphological Operations in a
Radiomics Study for Lung Cancer
- Title(参考訳): 肺癌放射線検査におけるテクスチャーによる形態変化の予後
- Authors: Paul Desbordes and Diksha and Benoit Macq
- Abstract要約: この研究は、非小細胞肺癌(NSCLC)を患っている患者のオープンデータベース上で行われます。
腫瘍の特徴をCT画像から抽出し,PCAおよびKaplan-Meierサバイバル分析を用いて解析し,最も関連性の高いものを選択する。
1,589件の研究された特徴のうち、32件は患者の生存を予測するために関連している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The importance of radiomics features for predicting patient outcome is now
well-established. Early study of prognostic features can lead to a more
efficient treatment personalisation. For this reason new radiomics features
obtained through mathematical morphology-based operations are proposed. Their
study is conducted on an open database of patients suffering from Nonsmall
Cells Lung Carcinoma (NSCLC). The tumor features are extracted from the CT
images and analyzed via PCA and a Kaplan-Meier survival analysis in order to
select the most relevant ones. Among the 1,589 studied features, 32 are found
relevant to predict patient survival: 27 classical radiomics features and five
MM features (including both granularity and morphological covariance features).
These features will contribute towards the prognostic models, and eventually to
clinical decision making and the course of treatment for patients.
- Abstract(参考訳): 患者の予後を予測するための放射線学的特徴の重要性が確立されている。
予後に関する初期の研究は、より効率的な治療のパーソナライゼーションをもたらす可能性がある。
このため, 数学的形態学に基づく新たな放射能特性が提案されている。
彼らの研究は非小細胞肺癌(NSCLC)患者のオープンデータベース上で行われた。
腫瘍の特徴をCT画像から抽出し,PCAおよびKaplan-Meierサバイバル分析を用いて解析し,最も関連性の高いものを選択する。
研究対象の1,589例のうち32例は患者生存予測に関連があり,27例の古典的放射能特徴と5例のMM特徴(粒度と形態的共分散特徴を含む)がある。
これらの特徴は予後予測モデルに寄与し、最終的には臨床意思決定と患者の治療方針に寄与する。
関連論文リスト
- Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling [4.1032659987778315]
放射線的特徴セットの高次元性、放射線的特徴タイプの変動性、そして潜在的に高い計算要求は、全て、与えられた臨床問題に対する最小の予測的特徴セットを特定する効果的な方法の必要性を浮き彫りにしている。
我々は,最小限の放射線学的特徴を識別し,説明するための方法論とツールを開発する。
論文 参考訳(メタデータ) (2024-07-05T23:14:46Z) - Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
本研究では,ダイナミックコントラスト強調画像(DCE)とADCマップを用いた乳癌患者のpCR予測モデルを提案する。
本手法は, 腫瘍関連領域からの特徴抽出を誘導するために放射線を利用した自己注意機構を備えたエンコーダを用いて, DCE MRI と ADC から特徴抽出を行う。
論文 参考訳(メタデータ) (2024-06-05T04:49:55Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
BraTS-MEN-RTの課題は、脳MRIを計画する放射線治療の最大のマルチ機関データセットを使用して、自動セグメンテーションアルゴリズムを進化させることである。
それぞれの症例には、3D後T1強調放射線治療計画MRIがネイティブな取得スペースに含まれている。
ターゲットボリュームアノテーションは、確立された放射線治療計画プロトコルに準拠している。
論文 参考訳(メタデータ) (2024-05-28T17:25:43Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients [1.7623658472574557]
ネオアジュバント化学療法(ネオアジュバントセラピー、Neoadjuvant chemotherapy, NACT)は、卵巣がんの進行期における治療法の一つ。
NACTに対する部分的反応は、近位部破裂手術を引き起こす可能性があり、予後不良を引き起こす。
我々は,NATの早期に高精度な予後予測を実現するために,新しい画像マーカーを開発した。
論文 参考訳(メタデータ) (2023-09-13T16:59:50Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - Analysis of MRI Biomarkers for Brain Cancer Survival Prediction [0.3093890460224435]
マルチモーダルMRIによる脳がん患者の総合生存率(OS)の予測は、研究の難しい分野である。
生存予測に関する既存の文献のほとんどは、放射能の特徴に基づいている。
年齢は最も重要な生物学的予測因子であることがわかった。
論文 参考訳(メタデータ) (2021-09-03T05:35:47Z) - Applying a random projection algorithm to optimize machine learning
model for predicting peritoneal metastasis in gastric cancer patients using
CT images [0.3120960917423201]
手術前の癌転移のリスクを非侵襲的に予測することは、最適な治療方法を決定する上で重要な役割を担っている。
本研究では,小・不均衡の画像データセットを用いて最適な機械学習モデルを構築するための新しいアプローチについて検討する。
論文 参考訳(メタデータ) (2020-09-01T19:53:09Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。