論文の概要: SCC: an efficient deep reinforcement learning agent mastering the game
of StarCraft II
- arxiv url: http://arxiv.org/abs/2012.13169v1
- Date: Thu, 24 Dec 2020 08:43:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-25 08:11:14.249749
- Title: SCC: an efficient deep reinforcement learning agent mastering the game
of StarCraft II
- Title(参考訳): SCC:StarCraft IIのゲームを習得する効率的な深層強化学習エージェント
- Authors: Xiangjun Wang, Junxiao Song, Penghui Qi, Peng Peng, Zhenkun Tang, Wei
Zhang, Weimin Li, Xiongjun Pi, Jujie He, Chao Gao, Haitao Long, Quan Yuan
- Abstract要約: AlphaStarは、StarCraft IIのGrandMasterレベルに達するAIであり、深い強化学習が達成できることを示す驚くべきマイルストーンです。
我々は、深層強化学習エージェント、StarCraft Commander (SCC)を提案する。
SCCは、テストマッチでグランドマスタープレーヤーを倒し、ライブイベントでトッププロフェッショナルプレーヤーを倒す人間のパフォーマンスを実証します。
- 参考スコア(独自算出の注目度): 15.612456049715123
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AlphaStar, the AI that reaches GrandMaster level in StarCraft II, is a
remarkable milestone demonstrating what deep reinforcement learning can achieve
in complex Real-Time Strategy (RTS) games. However, the complexities of the
game, algorithms and systems, and especially the tremendous amount of
computation needed are big obstacles for the community to conduct further
research in this direction. We propose a deep reinforcement learning agent,
StarCraft Commander (SCC). With order of magnitude less computation, it
demonstrates top human performance defeating GrandMaster players in test
matches and top professional players in a live event. Moreover, it shows strong
robustness to various human strategies and discovers novel strategies unseen
from human plays. In this paper, we will share the key insights and
optimizations on efficient imitation learning and reinforcement learning for
StarCraft II full game.
- Abstract(参考訳): AlphaStarは、StarCraft IIのグランドマスターレベルに達したAIで、複雑なリアルタイム戦略(RTS)ゲームにおいて、深層強化学習が何を達成できるかを示す驚くべきマイルストーンだ。
しかし、ゲーム、アルゴリズム、システムの複雑さ、特に膨大な量の計算は、コミュニティにとってこの方向にさらなる研究を行う大きな障害である。
我々は,深層強化学習エージェントであるstarcraft commander (scc)を提案する。
計算量が桁違いに減ると、人間のパフォーマンスがテストマッチでグランドマスタープレーヤーを破って、ライブイベントではトッププロプレイヤーを破る。
さらに、様々な人間の戦略に対して強い堅牢性を示し、人間の遊びから見えない新しい戦略を発見する。
本稿では,StarCraft IIのフルゲームにおいて,効率的な模倣学習と強化学習に関する重要な洞察と最適化を共有する。
関連論文リスト
- Reinforcement Learning for High-Level Strategic Control in Tower Defense Games [47.618236610219554]
戦略ゲームにおいて、ゲームデザインの最も重要な側面の1つは、プレイヤーにとっての挑戦の感覚を維持することである。
従来のスクリプティング手法と強化学習を組み合わせた自動手法を提案する。
その結果、強化学習のような学習アプローチとスクリプトAIを組み合わせることで、AIのみを使用するよりも高性能で堅牢なエージェントが生まれることが示された。
論文 参考訳(メタデータ) (2024-06-12T08:06:31Z) - Large Language Models Play StarCraft II: Benchmarks and A Chain of Summarization Approach [7.693497788883165]
VoyageやMetaGPTのような大規模言語モデル(LLM)エージェントは、複雑なタスクを解く大きな可能性を示す。
本稿では,生観測処理のための単一フレーム要約と,ゲーム情報解析のための多フレーム要約を含む要約手法を提案する。
1. LLMはStarCraft IIのシナリオに対処するのに必要な知識と複雑な計画能力を持っている; 2. 人間の専門家は、LLMエージェントのパフォーマンスは、StarCraft IIを8年間プレイした平均的なプレイヤーのそれに近いと考えている; 3. LLMエージェントはAIで構築されたエージェントを倒すことができる。
論文 参考訳(メタデータ) (2023-12-19T05:27:16Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
我々は、GuanDanという、非常に複雑で人気のあるカードゲームのためのAIプログラムを開発した。
私たちはまず、DanZeroという名のAIプログラムをこのゲームのために提案しました。
AIの能力をさらに強化するために、政策に基づく強化学習アルゴリズムをGuanDanに適用する。
論文 参考訳(メタデータ) (2023-12-05T08:07:32Z) - AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning [38.75717733273262]
StarCraft IIは、最も難しいシミュレーションされた強化学習環境の1つである。
Blizzardは、人間のプレーヤーがプレイする何百万ものStarCraft IIゲームの大規模なデータセットをリリースした。
データセット(Blizzardのリリースのサブセット)、マシンラーニングメソッドのAPIを標準化するツール、評価プロトコルを定義します。
論文 参考訳(メタデータ) (2023-08-07T12:21:37Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
本稿では,既存の自動ゲームテストソリューションに,スクリプト型ボットをベースとして,実験的な強化学習システムを追加する取り組みについて述べる。
ゲーム制作において強化学習を活用するためのユースケースを示し、ゲームのために同じ旅をしたいと思う人なら誰でも遭遇する最大の時間をカバーしています。
我々は、機械学習、特にゲーム生産において効果的なツールである強化学習を作るのに価値があり、必要であると考えるいくつかの研究指針を提案する。
論文 参考訳(メタデータ) (2023-07-19T18:19:23Z) - Mastering the Game of No-Press Diplomacy via Human-Regularized
Reinforcement Learning and Planning [95.78031053296513]
ノープレス外交(No-press Diplomacy)は、協力と競争の両方を含む複雑な戦略ゲームである。
我々は、人間の模倣学習ポリシーに対する報酬最大化ポリシーを規則化する、DiL-piKLと呼ばれる計画アルゴリズムを導入する。
RL-DiL-piKLと呼ばれる自己再生強化学習アルゴリズムに拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-10-11T14:47:35Z) - On Efficient Reinforcement Learning for Full-length Game of StarCraft II [21.768578136029987]
本稿では,抽出されたマクロアクションとニューラルネットワークの階層構造を含む階層的RL手法について検討する。
64x64マップと制限単位を用いて、レベル1組込みAIに対して99%の勝利率を達成する。
我々は、エージェントを不正なレベルAIに対して訓練し、レベル8、レベル9、レベル10のAIに対してそれぞれ96%、97%、94%の勝利率を達成するために、アーキテクチャを改善した。
論文 参考訳(メタデータ) (2022-09-23T12:24:21Z) - Applying supervised and reinforcement learning methods to create
neural-network-based agents for playing StarCraft II [0.0]
本稿では,汎用的な教師付き強化学習でトレーニングしたStarCraft IIのフル2プレーヤマッチングを実現するニューラルネットワークアーキテクチャを提案する。
本実装では,ゲーム内スクリプトボットと比較して,非自明な性能を実現している。
論文 参考訳(メタデータ) (2021-09-26T20:08:10Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - TStarBot-X: An Open-Sourced and Comprehensive Study for Efficient League
Training in StarCraft II Full Game [25.248034258354533]
最近、GoogleのDeepMindは、StarCraft IIのグランドマスターレベルのAIであるAlphaStarを発表した。
本稿では,TStarBot-XというAIエージェントを導入する。このエージェントはより少ない計算量で訓練され,熟練した人間プレイヤーと競争できる。
論文 参考訳(メタデータ) (2020-11-27T13:31:49Z) - Suphx: Mastering Mahjong with Deep Reinforcement Learning [114.68233321904623]
我々は、新たに導入されたいくつかの技術を用いた深層強化学習に基づいて、Suphxという名のマフジョンのためのAIを設計する。
Suphxは、安定したランクの点で、ほとんどのトップの人間プレイヤーよりも強いパフォーマンスを示している。
コンピュータプログラムがマヒョンで最上位の人間プレイヤーを上回るのは、これが初めてである。
論文 参考訳(メタデータ) (2020-03-30T16:18:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。