Non classical light in Jx photonic lattice
- URL: http://arxiv.org/abs/2012.14326v2
- Date: Thu, 14 Jan 2021 06:40:18 GMT
- Title: Non classical light in Jx photonic lattice
- Authors: Manoranjan Swain and Amit Rai
- Abstract summary: We focus on two photon Fock state, two photon N00N state, and single mode squeezed state along with coherent state as input to the lattice.
Our results should have applications in physical implementation of photonic continuous variable quantum information processing.
- Score: 0.02538209532048866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report the study of non-classical light in a photonic lattice having
parabolic coupling distribution, also known as Jx photonic lattice. We focus on
two photon Fock state, two photon N00N state, and single mode squeezed state
along with coherent state as input to the lattice. We investigate the
possibility of perfect transfer of mean photon number as well as quantum state
from one waveguide mode to other. We study photon-photon correlation for two
photon N00N state. For single mode squeezed state we study in detail, the
evolution of squeezing factor and entanglement between the waveguide modes. Our
findings suggest perfect transfer of average photon number for all cases and
perfect transfer of quantum state in case of two photon Fock state and two
photon N00N state only and not in the case of squeezed and coherent state. Our
results should have applications in physical implementation of photonic
continuous variable quantum information processing.
Related papers
- Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter [0.0]
We demonstrate deterministic and reconfigurable graph state generation with optical solid-state integrated quantum emitters.
We perform quantum state tomography of two successive photons, measuring Bell state fidelities up to 0.80$pm$0.04 and concurrences up to 0.69$pm$0.09.
This simple optical scheme, compatible with commercially available quantum dot-based single photon sources, brings us a step closer to fault-tolerant quantum computing with spins and photons.
arXiv Detail & Related papers (2024-10-30T23:59:54Z) - Subtraction and Addition of Propagating Photons by Two-Level Emitters [2.321156230142032]
We show that a passive two-level nonlinearity suffices to implement non-Gaussian quantum operations on propagating field modes.
We accurately describe the single-photon subtraction process by elements of an intuitive quantum-trajectory model.
arXiv Detail & Related papers (2024-04-18T16:55:33Z) - Quantum Nature of Quasi-Classical States and Highest Possible
Single-Photon Rate [0.0]
We study the purely quantum mechanical effects of quasi-classical states.
We find their quantum signature hints to the highest possible single-photon rate.
Our work is a step forward towards a more diverse and practical use of quasi-classical states in the domain of quantum optics and quantum information.
arXiv Detail & Related papers (2023-07-18T01:23:14Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - A Quantum trajectory picture of single photon absorption and energy
transport in photosystem II [0.0]
We study the first step in photosynthesis for the limiting case of a single photon interacting with photosystem II (PSII)
We model our system using quantum trajectory theory, which allows us to consider not only the average evolution, but also the conditional evolution of the system.
The long time evolution of the phononic model predicts an experimentally consistent quantum efficiency of 92%.
arXiv Detail & Related papers (2021-10-25T03:03:28Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Artificial coherent states of light by multi-photon interference in a
single-photon stream [0.0]
Coherent optical states consist of a quantum superposition of different photon number (Fock) states.
We create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states.
The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons.
arXiv Detail & Related papers (2020-10-29T10:40:33Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.