論文の概要: Multiple Plans are Better than One: Diverse Stochastic Planning
- arxiv url: http://arxiv.org/abs/2012.15485v1
- Date: Thu, 31 Dec 2020 07:29:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 17:00:50.888403
- Title: Multiple Plans are Better than One: Diverse Stochastic Planning
- Title(参考訳): 複数の計画の方が1より優れている: 異種確率計画
- Authors: Mahsa Ghasemi, Evan Scope Crafts, Bo Zhao, Ufuk Topcu
- Abstract要約: 計画上の問題では、望ましい仕様を完全にモデル化することはしばしば困難です。
特に、人間とロボットの相互作用において、そのような困難は、プライベートまたはモデルに複雑である人間の好みによって生じる可能性がある。
我々は、最適に近い代表行動の集合を生成することを目的とした、多種多様な計画と呼ばれる問題を定式化する。
- 参考スコア(独自算出の注目度): 26.887796946596243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In planning problems, it is often challenging to fully model the desired
specifications. In particular, in human-robot interaction, such difficulty may
arise due to human's preferences that are either private or complex to model.
Consequently, the resulting objective function can only partially capture the
specifications and optimizing that may lead to poor performance with respect to
the true specifications. Motivated by this challenge, we formulate a problem,
called diverse stochastic planning, that aims to generate a set of
representative -- small and diverse -- behaviors that are near-optimal with
respect to the known objective. In particular, the problem aims to compute a
set of diverse and near-optimal policies for systems modeled by a Markov
decision process. We cast the problem as a constrained nonlinear optimization
for which we propose a solution relying on the Frank-Wolfe method. We then
prove that the proposed solution converges to a stationary point and
demonstrate its efficacy in several planning problems.
- Abstract(参考訳): 計画の問題では、望ましい仕様を完全にモデル化することがしばしば困難である。
特に、人間とロボットの相互作用において、そのような困難は人間の好みによって生じる可能性がある。
その結果、結果として得られた目的関数は、仕様を部分的にキャプチャし、真の仕様に関して性能が低下する可能性のある最適化のみを行えます。
この課題に動機づけられた我々は、既知の目的に関してほぼ最適である一連の代表的行動を生成することを目的とした、多様な確率計画と呼ばれる問題を定式化します。
特に、この問題はマルコフ決定プロセスによってモデル化されたシステムの多様でほぼ最適のポリシーの集合を計算することを目的としている。
この問題を制約付き非線形最適化として,フランク=ウルフ法に依存する解を提案する。
次に,提案手法が定常点に収束し,いくつかの計画問題において有効性を示す。
関連論文リスト
- Optimization-Driven Adaptive Experimentation [7.948144726705323]
実世界の実験には、バッチで遅延したフィードバック、非定常性、複数の目的と制約、そして(時には)パーソナライゼーションが含まれる。
これらの課題にプロブレム単位で対処するための適応的手法の調整は不可能であり、静的設計はデファクトスタンダードのままである。
本稿では,多種多様な目的,制約,統計的手順を柔軟に組み込む数学的プログラミングの定式化について述べる。
論文 参考訳(メタデータ) (2024-08-08T16:29:09Z) - Differentiation of Multi-objective Data-driven Decision Pipeline [34.577809430781144]
実世界のシナリオは、しばしば多目的データ駆動最適化問題を含む。
従来の2段階の手法では、機械学習モデルを用いて問題係数を推定し、続いて予測された最適化問題に取り組むためにソルバを呼び出す。
近年の取り組みは、下流最適化問題から導かれる意思決定損失を用いた予測モデルのエンドツーエンドトレーニングに重点を置いている。
論文 参考訳(メタデータ) (2024-06-02T15:42:03Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Multi-Target Multiplicity: Flexibility and Fairness in Target
Specification under Resource Constraints [76.84999501420938]
対象の選択が個人の結果にどのように影響するかを評価するための概念的および計算的枠組みを導入する。
目的変数選択から生じる多重度は, 1つのターゲットのほぼ最適モデルから生じるものよりも大きいことが示される。
論文 参考訳(メタデータ) (2023-06-23T18:57:14Z) - Motion Planning by Learning the Solution Manifold in Trajectory
Optimization [6.127237810365965]
本稿では,運動計画問題に対する無限の解集合を生成する最適化手法を提案する。
結果は、実験モデルが運動計画問題のホモトピー解の無限集合を表すことを示している。
論文 参考訳(メタデータ) (2021-07-13T04:47:47Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
我々は、強化学習を通して解決された逐次決定問題(MDP)の文脈における予測列最適化フレームワークについて検討した。
2つの重要な計算課題は、意思決定中心の学習をMDPに適用することである。
論文 参考訳(メタデータ) (2021-06-06T23:53:31Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Learning the Solution Manifold in Optimization and Its Application in
Motion Planning [4.177892889752434]
我々は、変数のような変数上の多様体を学習し、そのようなモデルは無限の解の集合を表す。
本フレームワークでは,この重要度を用いて問題推定を行う。
本研究では,高次元パラメータの最適化を含む動き計画問題に適用する。
論文 参考訳(メタデータ) (2020-07-24T08:05:36Z) - Multi-tier Automated Planning for Adaptive Behavior (Extended Version) [0.4129225533930965]
本稿では,異なる仮定セットの仕様を計画するための多層フレームワークを提案する。
非決定論的計画形式への簡潔なコンパイルによる問題インスタンスの解法を示す。
論文 参考訳(メタデータ) (2020-02-27T21:16:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。