論文の概要: Motion Planning by Learning the Solution Manifold in Trajectory
Optimization
- arxiv url: http://arxiv.org/abs/2107.05842v1
- Date: Tue, 13 Jul 2021 04:47:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-14 14:31:38.151272
- Title: Motion Planning by Learning the Solution Manifold in Trajectory
Optimization
- Title(参考訳): 軌道最適化における解多様体学習による運動計画
- Authors: Takayuki Osa
- Abstract要約: 本稿では,運動計画問題に対する無限の解集合を生成する最適化手法を提案する。
結果は、実験モデルが運動計画問題のホモトピー解の無限集合を表すことを示している。
- 参考スコア(独自算出の注目度): 6.127237810365965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective function used in trajectory optimization is often non-convex
and can have an infinite set of local optima. In such cases, there are diverse
solutions to perform a given task. Although there are a few methods to find
multiple solutions for motion planning, they are limited to generating a finite
set of solutions. To address this issue, we presents an optimization method
that learns an infinite set of solutions in trajectory optimization. In our
framework, diverse solutions are obtained by learning latent representations of
solutions. Our approach can be interpreted as training a deep generative model
of collision-free trajectories for motion planning. The experimental results
indicate that the trained model represents an infinite set of homotopic
solutions for motion planning problems.
- Abstract(参考訳): 軌道最適化で用いられる目的関数は、しばしば非凸であり、無限の局所最適集合を持つことができる。
そのような場合、与えられたタスクを実行するための様々なソリューションがあります。
運動計画のための複数の解を見つける方法はいくつかあるが、それらは有限の解を生成することに限定されている。
本稿では,軌道最適化において無限の解集合を学習する最適化手法を提案する。
私たちのフレームワークでは、ソリューションの潜在表現を学習することで、多様なソリューションが得られます。
本手法は,移動計画のための衝突のない軌道の深部生成モデルの訓練と解釈できる。
実験結果は、トレーニングされたモデルが運動計画問題のホモトピー解の無限集合を表すことを示している。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Optimization-Driven Adaptive Experimentation [7.948144726705323]
実世界の実験には、バッチで遅延したフィードバック、非定常性、複数の目的と制約、そして(時には)パーソナライゼーションが含まれる。
これらの課題にプロブレム単位で対処するための適応的手法の調整は不可能であり、静的設計はデファクトスタンダードのままである。
本稿では,多種多様な目的,制約,統計的手順を柔軟に組み込む数学的プログラミングの定式化について述べる。
論文 参考訳(メタデータ) (2024-08-08T16:29:09Z) - Few for Many: Tchebycheff Set Scalarization for Many-Objective Optimization [14.355588194787073]
多目的最適化は、競合する目的を1つのソリューションで最適化できない現実の多くのアプリケーションで見られる。
本稿では,多数の目的をカバーできるいくつかの代表解を見つけるために,新しいTchebycheff集合スカラー化法を提案する。
このようにして、それぞれの目的は、小さな解集合の少なくとも1つの解によってうまく対応できる。
論文 参考訳(メタデータ) (2024-05-30T03:04:57Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
本稿では,スムーズな制約付き最適化のための一階法について紹介する。
提案手法の2つの特徴は、実現可能な集合全体の投影や最適化が避けられることである。
結果として得られるアルゴリズムの手順は、制約が非線形であっても簡単に実装できる。
論文 参考訳(メタデータ) (2021-07-17T11:45:13Z) - Extracting Optimal Solution Manifolds using Constrained Neural
Optimization [6.800113407368289]
制約付き最適化解アルゴリズムは点ベース解に制限される。
最適集合を近似として抽出する手法を提案する。
論文 参考訳(メタデータ) (2020-09-13T15:37:44Z) - Learning the Solution Manifold in Optimization and Its Application in
Motion Planning [4.177892889752434]
我々は、変数のような変数上の多様体を学習し、そのようなモデルは無限の解の集合を表す。
本フレームワークでは,この重要度を用いて問題推定を行う。
本研究では,高次元パラメータの最適化を含む動き計画問題に適用する。
論文 参考訳(メタデータ) (2020-07-24T08:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。