論文の概要: Generative Deep Learning for Virtuosic Classical Music: Generative
Adversarial Networks as Renowned Composers
- arxiv url: http://arxiv.org/abs/2101.00169v1
- Date: Fri, 1 Jan 2021 05:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-17 13:09:33.158604
- Title: Generative Deep Learning for Virtuosic Classical Music: Generative
Adversarial Networks as Renowned Composers
- Title(参考訳): Virtuosic Classical Musicのための生成的深層学習:レンタル作曲家としての生成的敵対的ネットワーク
- Authors: Daniel Szelogowski
- Abstract要約: 現在のAI生成音楽は、優れた作曲技法の基本原理を欠いている。
私たちは、マスターコンポジションとほとんど区別できないコンポジションに必要なパラメータをよりよく理解することができます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current AI-generated music lacks fundamental principles of good compositional
techniques. By narrowing down implementation issues both programmatically and
musically, we can create a better understanding of what parameters are
necessary for a generated composition nearly indistinguishable from that of a
master composer.
- Abstract(参考訳): 現在のAI生成音楽は、優れた作曲技法の基本原理を欠いている。
プログラム的にも音楽的にも実装上の問題を絞り込むことで、生成した楽曲に必要となるパラメータをマスター作曲家とほとんど区別できないものに理解することが可能になる。
関連論文リスト
- ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - Music Genre Classification with ResNet and Bi-GRU Using Visual
Spectrograms [4.354842354272412]
手動のジャンル分類の限界は、より高度なシステムの必要性を強調している。
従来の機械学習技術はジャンル分類の可能性を示してきたが、音楽データの完全な複雑さを捉えられなかった。
本研究では,視覚スペクトログラムを入力として用いる新しいアプローチを提案し,Residual Neural Network(ResNet)とGated Recurrent Unit(GRU)の強みを組み合わせたハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2023-07-20T11:10:06Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Pitchclass2vec: Symbolic Music Structure Segmentation with Chord
Embeddings [0.8701566919381222]
シンボリックコードアノテーションに基づく新しい楽曲セグメンテーション手法であるpitchclass2vecを提案する。
提案アルゴリズムは,Long-Short term memory(LSTM)ニューラルネットワークをベースとして,現場における記号コードアノテーションに基づく最先端技術より優れている。
論文 参考訳(メタデータ) (2023-03-24T10:23:15Z) - Composer: Creative and Controllable Image Synthesis with Composable
Conditions [57.78533372393828]
ビッグデータで学んだ最近の大規模な生成モデルは、驚くべき画像を合成できるが、制御性は限られている。
この研究は、合成品質とモデルの創造性を維持しつつ、空間配置やパレットのような出力画像の柔軟な制御を可能にする新しい世代パラダイムを提供する。
論文 参考訳(メタデータ) (2023-02-20T05:48:41Z) - Comparision Of Adversarial And Non-Adversarial LSTM Music Generative
Models [2.569647910019739]
この研究は、MIDIデータに基づいて、リカレントニューラルネットワーク音楽作曲家の敵対的および非敵対的な訓練を実装し、比較する。
この評価は, 対人訓練がより審美的に楽しむ音楽を生み出すことを示唆している。
論文 参考訳(メタデータ) (2022-11-01T20:23:49Z) - Music Composition with Deep Learning: A Review [1.7188280334580197]
創造性のある音楽を生成するための,現在のディープラーニングモデルの能力について分析する。
理論的観点からこれらのモデルと作曲過程を比較した。
論文 参考訳(メタデータ) (2021-08-27T13:53:53Z) - MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training [97.91071692716406]
シンボリック・ミュージックの理解(シンボリック・ミュージックの理解)とは、シンボリック・データから音楽を理解することを指す。
MusicBERTは、音楽理解のための大規模な事前訓練モデルである。
論文 参考訳(メタデータ) (2021-06-10T10:13:05Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。