論文の概要: Music Composition with Deep Learning: A Review
- arxiv url: http://arxiv.org/abs/2108.12290v1
- Date: Fri, 27 Aug 2021 13:53:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-30 15:38:59.470467
- Title: Music Composition with Deep Learning: A Review
- Title(参考訳): 深層学習による音楽作曲についての一考察
- Authors: Carlos Hernandez-Olivan, Jose R. Beltran
- Abstract要約: 創造性のある音楽を生成するための,現在のディープラーニングモデルの能力について分析する。
理論的観点からこれらのモデルと作曲過程を比較した。
- 参考スコア(独自算出の注目度): 1.7188280334580197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating a complex work of art such as a musical composition requires
exhibiting true creativity that depends on a variety of factors that are
related to the hierarchy of musical language. Music generation have been faced
with Algorithmic methods and recently, with Deep Learning models that are being
used in other fields such as Computer Vision. In this paper we want to put into
context the existing relationships between AI-based music composition models
and human musical composition and creativity processes. We give an overview of
the recent Deep Learning models for music composition and we compare these
models to the music composition process from a theoretical point of view. We
have tried to answer some of the most relevant open questions for this task by
analyzing the ability of current Deep Learning models to generate music with
creativity or the similarity between AI and human composition processes, among
others.
- Abstract(参考訳): 作曲のような複雑な芸術作品を生成するには、音楽の階層構造に関連する様々な要因に依存する真の創造性を示す必要がある。
音楽生成はアルゴリズム的手法で行われており、近年はコンピュータビジョンなどの他の分野で使われているディープラーニングモデルと対立している。
本稿では,AIに基づく楽曲合成モデルと人間の楽曲合成と創造性プロセスの既存の関係について考察する。
本稿では,最近の音楽合成の深層学習モデルの概要を述べるとともに,理論的な観点から,これらのモデルと作曲過程を比較した。
我々は、AIと人間の作曲プロセスの類似性や創造性を備えた音楽を生成するために、現在のディープラーニングモデルの能力を分析することで、このタスクに最も関係のあるオープンな疑問に答えようとしている。
関連論文リスト
- Mode-conditioned music learning and composition: a spiking neural network inspired by neuroscience and psychology [5.2419221159594676]
そこで我々は,脳のメカニズムや心理的理論にインスパイアされたスパイクニューラルネットワークを提案し,音楽モードとキーを表現する。
我々の研究は、音楽を学び、生成するだけでなく、人間の認知と人工知能のギャップを埋めるシステムを作ることを目指している。
論文 参考訳(メタデータ) (2024-11-22T07:29:26Z) - A Survey of Foundation Models for Music Understanding [60.83532699497597]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (2024-09-15T03:34:14Z) - Foundation Models for Music: A Survey [77.77088584651268]
ファンデーションモデル(FM)は音楽を含む様々な分野に大きな影響を与えている。
本総説では,音楽の事前学習モデルと基礎モデルについて概観する。
論文 参考訳(メタデータ) (2024-08-26T15:13:14Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - Motifs, Phrases, and Beyond: The Modelling of Structure in Symbolic
Music Generation [2.8062498505437055]
音楽構造をモデル化することは、シンボリック・ミュージック・コンポジションを生成する人工知能システムにとって重要な課題である。
本稿では,コヒーレント構造を取り入れた手法の進化を概観する。
我々は,すべての時代のアプローチを組み合わせることによる相乗効果を実現するために,いくつかの重要な方向性を概説する。
論文 参考訳(メタデータ) (2024-03-12T18:03:08Z) - Models of Music Cognition and Composition [0.0]
まず、音楽が認知科学者に関係している理由を動機付け、音楽認知の計算モデリングへのアプローチの概要を述べる。
次に,非コンピュータモデル,非認知モデル,計算認知モデルなど,音楽知覚の様々なモデルに関する文献をレビューする。
論文 参考訳(メタデータ) (2022-08-14T16:27:59Z) - Music Harmony Generation, through Deep Learning and Using a
Multi-Objective Evolutionary Algorithm [0.0]
本稿では,ポリフォニック音楽生成のための遺伝的多目的進化最適化アルゴリズムを提案する。
ゴールの1つは音楽の規則と規則であり、他の2つのゴール、例えば音楽の専門家や普通のリスナーのスコアとともに、最も最適な反応を得るために進化のサイクルに適合する。
その結果,提案手法は,聞き手を引き寄せながら文法に従う調和音とともに,所望のスタイルや長さの難易度と快適さを生み出すことができることがわかった。
論文 参考訳(メタデータ) (2021-02-16T05:05:54Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - Adaptive music: Automated music composition and distribution [0.0]
進化探索に基づくアルゴリズム合成法であるメロミクスを提案する。
このシステムは、様々な種類の音楽を作るために、高い創造力と汎用性を示してきた。
これはまた、全く新しい応用のセットの出現を可能にした。
論文 参考訳(メタデータ) (2020-07-25T09:38:06Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。