論文の概要: Quaternion higher-order singular value decomposition and its
applications in color image processing
- arxiv url: http://arxiv.org/abs/2101.00364v1
- Date: Sat, 2 Jan 2021 03:54:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-13 07:13:32.313103
- Title: Quaternion higher-order singular value decomposition and its
applications in color image processing
- Title(参考訳): 四元数高次特異値分解とそのカラー画像処理への応用
- Authors: Jifei Miao and Kit Ian Kou
- Abstract要約: HOSVDを四元数領域に一般化し、四元数に基づくHOSVD(QHOSVD)を定義する。
四元数乗算の非可換性のため、QHOSVD は HOSVD の自明な拡張ではない。
カラー画像処理における定義QHOSVDの2つの応用として、マルチフォーカスカラー画像融合とカラー画像復調について述べる。
- 参考スコア(独自算出の注目度): 1.1929584800629671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Higher-order singular value decomposition (HOSVD) is one of the most
efficient tensor decomposition techniques. It has the salient ability to
represent high_dimensional data and extract features. In more recent years, the
quaternion has proven to be a very suitable tool for color pixel representation
as it can well preserve cross-channel correlation of color channels. Motivated
by the advantages of the HOSVD and the quaternion tool, in this paper, we
generalize the HOSVD to the quaternion domain and define quaternion-based HOSVD
(QHOSVD). Due to the non-commutability of quaternion multiplication, QHOSVD is
not a trivial extension of the HOSVD. They have similar but different
calculation procedures. The defined QHOSVD can be widely used in various visual
data processing with color pixels. In this paper, we present two applications
of the defined QHOSVD in color image processing: multi_focus color image fusion
and color image denoising. The experimental results on the two applications
respectively demonstrate the competitive performance of the proposed methods
over some existing ones.
- Abstract(参考訳): 高次特異値分解(HOSVD)は、最も効率的なテンソル分解手法の一つである。
高い次元のデータを表現し、特徴を抽出することができる。
近年では、四元数はカラーチャネルのクロスチャネル相関を保存できるため、カラーピクセル表現に非常に適したツールであることが証明されている。
本稿では,HOSVDと四元数ツールの利点を活かして,HOSVDを四元数ドメインに一般化し,四元数ベースのHOSVD(QHOSVD)を定義する。
四元数乗算の非可換性のため、QHOSVD は HOSVD の自明な拡張ではない。
計算手順は似ているが異なる。
定義されたQHOSVDは、カラーピクセルを用いた様々な視覚データ処理で広く利用することができる。
本稿では,カラー画像処理における定義されたqhosvdの2つの応用について述べる。
この2つの応用実験の結果は,提案手法の既存手法に対する競合性能をそれぞれ示すものである。
関連論文リスト
- Evaluating the Effectiveness of Hybrid Quantum-Classical Convolutional Neural Networks for Image Classification in Multiple Color Spaces [1.565361244756411]
そこで本研究では,4種類のカラー空間画像の性能解析を行うためのハイブリッド量子古典畳み込みニューラルネットワーク(HQCCNN)モデルを提案する。
一部のスーパークラスでは、モデルがラボ、YCrCb、HSVの色空間だけでなく、RGBよりも優れている。
論文 参考訳(メタデータ) (2024-06-04T11:46:56Z) - A New Cross-Space Total Variation Regularization Model for Color Image Restoration with Quaternion Blur Operator [20.00683294783224]
カラー画像処理におけるクロスチャネル劣化問題は,複雑な結合とカラーピクセルの構造的ぼかしのため解決が難しい。
カラー画像の劣化に対する新しいクロススペース全変動(CSTV)正規化モデルを提案する。
異なる色空間における正規化関数のスイートバランスを求めるために,新しいL曲線法を提案する。
論文 参考訳(メタデータ) (2024-05-20T15:29:26Z) - Color Equivariant Convolutional Networks [50.655443383582124]
CNNは、偶然に記録された条件によって導入された色の変化の間にデータ不均衡がある場合、苦労する。
カラースペクトル間の形状特徴共有を可能にする新しいディープラーニングビルディングブロックであるカラー等変畳み込み(CEConvs)を提案する。
CEConvsの利点は、様々なタスクに対するダウンストリーム性能と、列車-テストの分散シフトを含む色の変化に対するロバスト性の改善である。
論文 参考訳(メタデータ) (2023-10-30T09:18:49Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
ドメインギャップは、異なるフォアグラウンド(核)-バックグラウンド比によっても引き起こされる可能性があると我々は主張する。
まず、異なる領域間の劇的な画像色変化を緩和する再カラー化手法を提案する。
次に,前景-背景比の変動に頑健な新しいインスタンス正規化手法を提案する。
論文 参考訳(メタデータ) (2023-09-01T01:01:13Z) - Quaternion tensor left ring decomposition and application for color
image inpainting [14.601163837840675]
TR分解の強力で一般化された表現能力を継承する四元数テンソル左環(QTLR)分解を提案する。
さらに,定義QTLR分解に基づくカラー画像インペイントのための低ランク四元数テンソル補完(LRQTC)モデルを提案する。
論文 参考訳(メタデータ) (2023-07-20T06:37:47Z) - Name Your Colour For the Task: Artificially Discover Colour Naming via
Colour Quantisation Transformer [62.75343115345667]
そこで本研究では,色空間を定量化しつつ,画像上での認識を維持しつつ,色空間を定量化する新しい色量子化変換器CQFormerを提案する。
人工色システムと人間の言語における基本色用語との一貫性のある進化パターンを観察する。
我々のカラー量子化法は、画像記憶を効果的に圧縮する効率的な量子化法も提供する。
論文 参考訳(メタデータ) (2022-12-07T03:39:18Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) は画像解析にいくつかの応用がある。
深層学習に基づくSOD法は最も効果的であるが、類似した色を持つ前景の部品を見逃すことがある。
スーパーピクセル類似性(SESS)に対するtextitSaliency Enhancement というポストプロセッシング手法を導入する。
我々は,SESSが5つの画像データセット上での3つのディープラーニングに基づくSOD手法の結果を連続的に,かつ著しく改善できることを実証した。
論文 参考訳(メタデータ) (2021-12-01T17:22:54Z) - Generalized Two-Dimensional Quaternion Principal Component Analysis with
Weighting for Color Image Recognition [1.516937009186805]
カラー画像認識の最も強力な方法の1つは、二次元原理成分分析(2DQPCA)アプローチである。
本稿では、重み付けによる一般化された2DQPCA手法について、制約関数と目的関数の両方に$L_p$ノルムを課す。
実顔データベースに基づく数値計算の結果,提案手法は雑音に対して頑健であり,最先端の2DQPCAアルゴリズムと4つの顕著な深層学習法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-04T03:37:23Z) - Uncertainty Inspired RGB-D Saliency Detection [70.50583438784571]
本稿では,データラベリングプロセスから学習することで,RGB-D値検出の不確実性を利用した最初のフレームワークを提案する。
そこで本研究では,確率的RGB-Dサリエンシ検出を実現するために,サリエンシデータラベリングプロセスにインスパイアされた生成アーキテクチャを提案する。
6つの挑戦的RGB-Dベンチマークデータセットの結果から,サリエンシマップの分布を学習する際のアプローチの優れた性能が示された。
論文 参考訳(メタデータ) (2020-09-07T13:01:45Z) - Full Quaternion Representation of Color images: A Case Study on
QSVD-based Color Image Compression [0.38073142980732994]
カラー画像を四元数で表現する手法を提案する。
オートエンコーダニューラルネットワークを用いて、カラー画像をフル四元行列に変換するグローバルモデルを生成する。
論文 参考訳(メタデータ) (2020-07-19T19:13:21Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。