Attentive Tree-structured Network for Monotonicity Reasoning
- URL: http://arxiv.org/abs/2101.00540v1
- Date: Sun, 3 Jan 2021 01:29:48 GMT
- Title: Attentive Tree-structured Network for Monotonicity Reasoning
- Authors: Zeming Chen
- Abstract summary: We develop an attentive tree-structured neural network for monotonicity reasoning.
It is designed to model the syntactic parse tree information from the sentence pair of a reasoning task.
A self-attentive aggregator is used for aligning the representations of the premise and the hypothesis.
- Score: 2.4366811507669124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many state-of-art neural models designed for monotonicity reasoning perform
poorly on downward inference. To address this shortcoming, we developed an
attentive tree-structured neural network. It consists of a tree-based
long-short-term-memory network (Tree-LSTM) with soft attention. It is designed
to model the syntactic parse tree information from the sentence pair of a
reasoning task. A self-attentive aggregator is used for aligning the
representations of the premise and the hypothesis. We present our model and
evaluate it using the Monotonicity Entailment Dataset (MED). We show and
attempt to explain that our model outperforms existing models on MED.
Related papers
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
We introduce the notion of an explainability-to-noise ratio for mixture models.
We propose an algorithm that takes as input a mixture model and constructs a suitable tree in data-independent time.
We prove upper and lower bounds on the error rate of the resulting decision tree.
arXiv Detail & Related papers (2024-11-03T14:00:20Z) - Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs)
Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity.
Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations.
arXiv Detail & Related papers (2024-06-19T06:45:19Z) - On the Origin of Llamas: Model Tree Heritage Recovery [39.08927346274156]
We introduce the task of Model Tree Heritage Recovery (MoTHer Recovery) for discovering Model Trees in neural networks.
Our hypothesis is that model weights encode this information, the challenge is to decode the underlying tree structure given the weights.
MoTHer recovery holds exciting long-term applications akin to indexing the internet by search engines.
arXiv Detail & Related papers (2024-05-28T17:59:51Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Trees are designed to learn the parameters of time series models.
By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity.
In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters.
arXiv Detail & Related papers (2024-05-13T15:22:15Z) - Concept-based Explanations using Non-negative Concept Activation Vectors
and Decision Tree for CNN Models [4.452019519213712]
This paper evaluates whether training a decision tree based on concepts extracted from a concept-based explainer can increase interpretability for Convolutional Neural Networks (CNNs) models.
arXiv Detail & Related papers (2022-11-19T21:42:55Z) - Learning compositional structures for semantic graph parsing [81.41592892863979]
We show how AM dependency parsing can be trained directly on a neural latent-variable model.
Our model picks up on several linguistic phenomena on its own and achieves comparable accuracy to supervised training.
arXiv Detail & Related papers (2021-06-08T14:20:07Z) - Cracking the Black Box: Distilling Deep Sports Analytics [17.35421731343764]
This paper addresses the trade-off between Accuracy and Transparency for deep learning applied to sports analytics.
We build a simple and transparent model that mimics the output of the original deep learning model and represents the learned knowledge in an explicit interpretable way.
arXiv Detail & Related papers (2020-06-04T01:49:36Z) - Exploiting Syntactic Structure for Better Language Modeling: A Syntactic
Distance Approach [78.77265671634454]
We make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called "syntactic distances"
Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
arXiv Detail & Related papers (2020-05-12T15:35:00Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
We evaluate the intermediate outputs of NMNs on NLVR2 and DROP datasets.
We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour.
arXiv Detail & Related papers (2020-05-02T06:50:35Z) - Multi-Step Inference for Reasoning Over Paragraphs [95.91527524872832]
Complex reasoning over text requires understanding and chaining together free-form predicates and logical connectives.
We present a compositional model reminiscent of neural module networks that can perform chained logical reasoning.
arXiv Detail & Related papers (2020-04-06T21:12:53Z) - Linguistically Driven Graph Capsule Network for Visual Question
Reasoning [153.76012414126643]
We propose a hierarchical compositional reasoning model called the "Linguistically driven Graph Capsule Network"
The compositional process is guided by the linguistic parse tree. Specifically, we bind each capsule in the lowest layer to bridge the linguistic embedding of a single word in the original question with visual evidence.
Experiments on the CLEVR dataset, CLEVR compositional generation test, and FigureQA dataset demonstrate the effectiveness and composition generalization ability of our end-to-end model.
arXiv Detail & Related papers (2020-03-23T03:34:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.