Fabrication of $^{15}\textrm{NV}^{-}$ centers in diamond using a
deterministic single ion implanter
- URL: http://arxiv.org/abs/2101.01979v1
- Date: Wed, 6 Jan 2021 11:32:42 GMT
- Title: Fabrication of $^{15}\textrm{NV}^{-}$ centers in diamond using a
deterministic single ion implanter
- Authors: K. Groot-Berning, G. Jacob, C. Osterkamp, F. Jelezko, F. Schmidt-Kaler
- Abstract summary: Nitrogen Vacancy (NV) centers in diamond are a platform for several important quantum technologies.
We demonstrate the creation of NV centers by implantation using a deterministic single ion source.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nitrogen Vacancy (NV) centers in diamond are a platform for several important
quantum technologies, including sensing, communication and elementary quantum
processors. In this letter we demonstrate the creation of NV centers by
implantation using a deterministic single ion source. For this we
sympathetically laser-cool single $^{15}\textrm{N}_2^+$ molecular ions in a
Paul trap and extract them at an energy of 5.9\,keV. Subsequently the ions are
focused with a lateral resolution of 121(35)\,nm and are implanted into a
diamond substrate without any spatial filtering by apertures or masks. After
high-temperature annealing, we detect the NV centers in a confocal microscope
and determine a conversion efficiency of about 0.6\,$\%$. The
$^{15}\textrm{NV}$ centers are characterized by optically detected magnetic
resonance (ODMR) on the hyperfine transition and coherence time.
Related papers
- A miniaturized magnetic field sensor based on nitrogen-vacancy centers [0.0]
The nitrogen-vacancy center in diamond is a prime candidate for quantum sensing technologies.
We present a fully integrated mechanically robust fiber-based endoscopic sensor capable of $5.9,mathrmnT/ sqrtmathrmHz$ magnetic field sensitivity.
We demonstrate the capability of vector magnetic field measurements in a magnetic field as used in state-of-the-art ultracold quantum gas experiments.
arXiv Detail & Related papers (2024-02-29T17:20:13Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Rapid generation of all-optical $^{39}$K Bose-Einstein condensates using
a low-field Feshbach resonance [58.720142291102135]
We investigate the production of all-optical $39$K Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near $33$ G.
We are able to produce fully condensed ensembles with $5.8times104$ atoms within $850$ ms evaporation time at a scattering length of $232.
Based on our findings we describe routes towards high-flux sources of ultra-cold potassium for inertial sensing.
arXiv Detail & Related papers (2022-01-12T16:39:32Z) - Creation of nitrogen-vacancy centers in chemical vapor deposition
diamond for sensing applications [0.22723215141187195]
The nitrogen-vacancy center in diamond is a promising quantum system for magnetometry applications.
Key material requirements for NV ensembles are a high NV$-$ concentration, a long spin coherence time and a stable charge state.
This study shows a pathway to engineer properties of NV-doped CVD diamonds for improved sensitivity.
arXiv Detail & Related papers (2021-11-15T18:47:08Z) - Tunable and Transferable Diamond Membranes for Integrated Quantum
Technologies [48.634695885442504]
nanoscale-thick uniform diamond membranes are synthesized via "smart-cut" and isotopically (12C) purified overgrowth.
Within 110 nm thick membranes, individual germanium-vacancy (GeV-) centers exhibit stable photoluminescence at 5.4 K and average optical transition linewidths as low as 125 MHz.
This platform enables the straightforward integration of diamond membranes that host coherent color centers into quantum technologies.
arXiv Detail & Related papers (2021-09-23T17:18:39Z) - Impact of surface and laser-induced noise on the spectral stability of
implanted nitrogen-vacancy centers in diamond [0.0]
quantum network technologies utilize the nitrogen vacancy center in diamond.
We create single NV centers by $15$N ion implantation and high-temperature vacuum annealing.
Long-term stability of the NV$-$ charge state and emission frequency is demonstrated.
arXiv Detail & Related papers (2021-05-20T03:03:51Z) - Magnetic field-assisted spectral decomposition and imaging of charge
states of NV centers in diamond [0.0]
We report two spectroscopy-based deconvolution methods to create charge state mapping images of ensembles of $NV$ centers in diamond.
Results help us to determine the spatial distribution of the $NV$ charge states in a diamond sample.
arXiv Detail & Related papers (2021-03-23T19:32:43Z) - Fast qubits of optical frequencies on the rare-earth ions in fluoride
crystals and color centers in diamond [62.997667081978825]
Fluoride crystals doped with rare-earth ions (REI) and pair centers in diamond for fast ($10-9rms$) quantum computers (FQC) are proposed.
arXiv Detail & Related papers (2021-03-23T10:00:56Z) - A Quantum Photonic Interface for Tin-Vacancy Centers in Diamond [0.0]
Tin-vacancy centers in diamond exhibit narrow-linewidth emission in nanostructures and possess long spin coherence times at temperatures above 1 K.
We integrate SnV$,textrm-$ centers into one-dimensional photonic crystal resonators and observe a 40-fold increase in emission intensity.
Our results pave the way for the creation of efficient, scalable spin-photon interfaces based on SnV$,textrm-$ centers in diamond.
arXiv Detail & Related papers (2021-02-23T18:33:16Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.