Nitrogen vacancy center in diamond-based Faraday magnetometer
- URL: http://arxiv.org/abs/2411.10437v2
- Date: Tue, 27 May 2025 16:02:41 GMT
- Title: Nitrogen vacancy center in diamond-based Faraday magnetometer
- Authors: Reza Kashtiban, Gavin W. Morley, Mark E. Newton, A T M Anishur Rahman,
- Abstract summary: The nitrogen vacancy (NV) center in diamond is a versatile color center used for magnetometry, quantum computing, and quantum communications.<n>We measure the spin states of the NV center using the Faraday effect and use such measurements to develop a novel magnetic field sensor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The nitrogen vacancy (NV) center in diamond is a versatile color center used for magnetometry, quantum computing, and quantum communications. In this article, using a single laser beam as a pump and probe, we measure the spin states of the NV center using the Faraday effect and use such measurements to develop a novel magnetic field sensor. Using the spin-state-dependent effect on the left and right circularly polarized light, we probe and confirm the existence of spin-orbit coupling in the NV center at room temperature. The sensitivity of our magnetometer is $350~$nT/$\sqrt{Hz}$, limited by the background produced by the laser trapped inside the diamond. We argue that by using an optical cavity and a high-purity diamond, sensitivities in the femtotesla level can be achieved.
Related papers
- A Coherence-Protection Scheme for Quantum Sensors Based on Ultra-Shallow Single Nitrogen-Vacancy Centers in Diamond [0.0]
We show that the spin coherence times of the ultra-shallow 1-nanometer deep NV center can be significantly enhanced near the spin-phonon limited regime at room temperature in $12$C enriched diamonds.
Our protocol is beneficial to $sim$10-nanometers deep NV centers in natural diamond too where the variable coherence properties of the center to the direction of the small constant magnetic fields establish vector magnetometry at the nanoscale.
arXiv Detail & Related papers (2024-12-30T23:22:53Z) - Microwave-free imaging magnetometry with nitrogen-vacancy centers in nanodiamonds at near-zero field [0.0]
Magnetometry using Nitrogen-Vacancy (NV) color centers in diamond predominantly relies on microwave spectroscopy.
This work demonstrates a wide-field, microwave-free imaging magnetometer utilizing NV centers in nanodiamonds.
arXiv Detail & Related papers (2024-09-03T18:08:48Z) - Strongly Coupled Spins of Silicon-Vacancy Centers Inside a Nanodiamond
with Sub-Megahertz Linewidth [43.06643088952006]
electron spin of a color center in diamond mediates interaction between a long-lived nuclear spin and a photon.
We demonstrate strong coupling of its electron spin, while the electron spin's decoherence rate remained below 1 MHz.
We furthermore demonstrate multi-spin coupling with the potential to establish registers of quantum memories in nanodiamonds.
arXiv Detail & Related papers (2023-12-14T14:17:35Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Spin coherence mapping of NV centers in diamond [0.0]
nitrogen-vacancy (NV) color centers in diamond have become excellent solid-state quantum sensors.
We show how to build a two-dimensional map of the electronic spin coherence of an ensemble of NV centers in ultra-pure diamond.
arXiv Detail & Related papers (2022-09-12T20:01:23Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Wide-field magnetometry with nitrogen-vacancy centers in randomly
oriented micro-diamonds [0.46906883107634084]
NV centers in arbitrarily oriented submicrometer-sized diamond powder can be used for sensing the magnetic field.
Our work can be extended to irregular surfaces, which shows a promising path for nanodiamond-based photonic sensors.
arXiv Detail & Related papers (2022-06-13T17:35:06Z) - DC Quantum Magnetometry Below the Ramsey Limit [68.8204255655161]
We demonstrate quantum sensing of dc magnetic fields that exceeds the sensitivity of conventional $Tast$-limited dc magnetometry by more than an order of magnitude.
We used nitrogen-vacancy centers in a diamond rotating at periods comparable to the spin coherence time, and characterize the dependence of magnetic sensitivity on measurement time and rotation speed.
arXiv Detail & Related papers (2022-03-27T07:32:53Z) - Multi-Center Magnon Excitations Open the Entire Brillouin Zone to
Terahertz Magnetometry of Quantum Magnets [42.72559625804617]
The magnon density of states can be accessed over the entire Brillouin zone through three-center magnon excitations.
The results of THz time-domain experiments agree remarkably well with linear spin-wave theory.
arXiv Detail & Related papers (2022-03-08T19:04:24Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Angle Locking of a Levitating Diamond using Spin-Diamagnetism [0.0]
We report on angle locking of the crystalline axis of a trapped micro-diamond along an external magnetic field.
Specifically, we use spin population inversion after a ground state level crossing of the NV center to turn the diamond into a diamagnet.
The diamond crystalline axis naturally aligns to the magnetic field with high precision and in the absence of micro-wave, offering bright prospects for applications in biology and spin-mechanical platforms.
arXiv Detail & Related papers (2021-02-26T18:30:04Z) - A high-sensitivity fiber-coupled diamond magnetometer with surface
coating [19.468384174783917]
Nitrogen-vacancy quantum defects in diamond offer a promising platform for magnetometry.
We present a high-sensitivity and wide-bandwidth fiber-based quantum magnetometer for practical applications.
arXiv Detail & Related papers (2021-02-24T11:53:03Z) - Laser threshold magnetometry using green light absorption by diamond
nitrogen vacancies in an external cavity laser [52.77024349608834]
Nitrogen vacancy (NV) centers in diamond have attracted considerable recent interest for use in quantum sensing.
We show theoretical sensitivity to magnetic field on the pT/sqrt(Hz) level is possible using a diamond with an optimal density of NV centers.
arXiv Detail & Related papers (2021-01-22T18:58:05Z) - Absorptive laser threshold magnetometry: combining visible diamond Raman
lasers and nitrogen-vacancy centres [0.0]
We propose a high-sensitivity magnetometry scheme based on a diamond Raman laser with visible pump absorption.
We show how the varying absorption of the NV centres changes the Raman laser output.
A shift in the diamond Raman laser threshold and output occurs with the external magnetic-field and microwave driving.
arXiv Detail & Related papers (2021-01-20T11:40:20Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals.
The nitrogen-vacancy center in diamond is one of the most promising platforms for real-world quantum sensing applications.
arXiv Detail & Related papers (2020-10-08T18:24:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.