Generation of spin currents by a temperature gradient in a two-terminal
device
- URL: http://arxiv.org/abs/2101.02020v2
- Date: Wed, 8 Dec 2021 14:32:42 GMT
- Title: Generation of spin currents by a temperature gradient in a two-terminal
device
- Authors: R. E. Barfknecht, A. Foerster, N. T. Zinner and A. G. Volosniev
- Abstract summary: We propose a two-terminal cold-atom simulator to study the interaction between spins and temperature.
The proposed quantum simulator consists of strongly interacting atoms that occupy two temperature reservoirs connected by a one-dimensional link.
We show the existence of a spin current in a system with a temperature difference by studying the dynamics that follows the spin-flip of an atom in the link.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Theoretical and experimental studies of the interaction between spins and
temperature are vital for the development of spin caloritronics, as they
dictate the design of future devices. In this work, we propose a two-terminal
cold-atom simulator to study that interaction. The proposed quantum simulator
consists of strongly interacting atoms that occupy two temperature reservoirs
connected by a one-dimensional link. First, we argue that the dynamics in the
link can be described using an inhomogeneous Heisenberg spin chain whose
couplings are defined by the local temperature. Second, we show the existence
of a spin current in a system with a temperature difference by studying the
dynamics that follows the spin-flip of an atom in the link. A temperature
gradient accelerates the impurity in one direction more than in the other,
leading to an overall spin current similar to the spin Seebeck effect.
Related papers
- Chirality-induced emergent spin-orbit coupling in topological atomic
lattices [0.0]
We show that photonic excitations in pseudospin-1/2 atomic lattices exhibit an emergent spin-orbit coupling when the geometry is chiral.
Our results demonstrate that chiral atom arrays are a robust platform for realizing spin-orbit coupled topological states of matter.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Quantum simulation of the central spin model with a Rydberg atom and
polar molecules in optical tweezers [0.0]
We propose an ultracold quantum simulator of a central spin model with XX (spin-exchanging) interactions.
By mapping internal particle states to spin states, spin-exchanging interactions can be simulated.
We numerically analyze two example dynamical scenarios which can be simulated in this setup.
arXiv Detail & Related papers (2023-02-28T17:17:59Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Tunable itinerant spin dynamics with polar molecules [2.830197032154302]
Ising and spin exchange interactions are precisely tuned by varying the strength and orientation of an electric field.
Our work establishes an interacting spin platform that allows for exploration of many-body spin dynamics and spin-motion physics.
arXiv Detail & Related papers (2022-08-03T16:57:36Z) - Condensation and thermalization of an easy-plane ferromagnet in a spinor
Bose gas [0.0]
We study the thermalization of an easy-plane ferromagnet employing a homogeneous one-dimensional spinor Bose gas.
We reveal the structure of the emergent quasi-particles: one'massive'(Higgs) mode, and two'massless' (Goldstone) modes.
arXiv Detail & Related papers (2022-05-12T16:18:49Z) - Dynamics of two central spins immersed in spin baths [4.057537590633553]
We derive the dynamics of a two qubit (spin 1/2) system interacting centrally with separate fermionic baths composed of qubits in thermal state.
We observe the evolution of quantum correlations like entanglement and discord under the influence of the environmental interaction.
This work is a stepping stone towards the realization of non-Markovian heat engines and other quantum thermal devices.
arXiv Detail & Related papers (2022-05-09T09:09:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.