論文の概要: Learning Guided Electron Microscopy with Active Acquisition
- arxiv url: http://arxiv.org/abs/2101.02746v1
- Date: Thu, 7 Jan 2021 20:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-10 13:29:47.615706
- Title: Learning Guided Electron Microscopy with Active Acquisition
- Title(参考訳): 能動的取得による学習誘導電子顕微鏡
- Authors: Lu Mi, Hao Wang, Yaron Meirovitch, Richard Schalek, Srinivas C.
Turaga, Jeff W. Lichtman, Aravinthan D.T. Samuel, Nir Shavit
- Abstract要約: 画像の単一ビームSEM取得を高速化し,最適化するためにディープラーニングを利用する方法を示す。
提案手法は,情報欠落画像を迅速に収集し,新しい学習法を適用し,高分解能で収集すべき画素のごく一部を識別する。
本稿では,神経生物学におけるコネクトロミックデータセットの収集作業を最大で1桁高速化することで,本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 8.181540928891913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-beam scanning electron microscopes (SEM) are widely used to acquire
massive data sets for biomedical study, material analysis, and fabrication
inspection. Datasets are typically acquired with uniform acquisition: applying
the electron beam with the same power and duration to all image pixels, even if
there is great variety in the pixels' importance for eventual use. Many SEMs
are now able to move the beam to any pixel in the field of view without delay,
enabling them, in principle, to invest their time budget more effectively with
non-uniform imaging.
In this paper, we show how to use deep learning to accelerate and optimize
single-beam SEM acquisition of images. Our algorithm rapidly collects an
information-lossy image (e.g. low resolution) and then applies a novel learning
method to identify a small subset of pixels to be collected at higher
resolution based on a trade-off between the saliency and spatial diversity. We
demonstrate the efficacy of this novel technique for active acquisition by
speeding up the task of collecting connectomic datasets for neurobiology by up
to an order of magnitude.
- Abstract(参考訳): 単ビーム走査電子顕微鏡(SEM)は、バイオメディカル研究、材料分析、製造検査のための膨大なデータセットを取得するために広く用いられている。
データセットは通常、均一な取得によって取得される:全ての画像ピクセルに同じパワーと持続時間を持つ電子ビームを適用する。
多くのsemは、ビームを遅延することなく視野内の任意のピクセルに移動することができ、原則として、非一様撮像でより効果的に時間予算を投資できる。
本稿では,ディープラーニングを用いて画像の単一ビームSEM取得を高速化し,最適化する方法を示す。
我々のアルゴリズムは情報量の多い画像(例)を迅速に収集する。
そして、サリエンシーと空間の多様性のトレードオフに基づいて、より高解像度で収集すべきピクセルの小さなサブセットを識別するために、新しい学習方法を適用する。
本稿では,神経生物学におけるコネクトロミックデータセットの収集作業を最大で1桁高速化することで,本手法の有効性を実証する。
関連論文リスト
- The Berkeley Single Cell Computational Microscopy (BSCCM) Dataset [1.53744306569115]
本稿では,バークレー単細胞顕微鏡データセットについて紹介する。
このデータセットには、40万個の白血球の12,000,000枚以上の画像が含まれている。
論文 参考訳(メタデータ) (2024-02-09T05:10:53Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
オーバーセグメントニューロン間の接続を予測し,人間の作業量を削減することを目的としている。
最初はFlyTracingという名前のデータセットを構築しました。
本稿では,高密度なボリュームEM画像の埋め込みを生成するための,新しい接続性を考慮したコントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-05T19:45:12Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - SEMPAI: a Self-Enhancing Multi-Photon Artificial Intelligence for
prior-informed assessment of muscle function and pathology [48.54269377408277]
本稿では,仮説駆動型先行処理をデータ駆動型ディープラーニングアプローチに統合した,SEMPAI(Self-Enhancing Multi-Photon Artificial Intelligence)を紹介する。
SEMPAIは、小さなデータセットの予測を可能にするために、いくつかのタスクを共同で学習する。
SEMPAIは、少ないデータを含む7つの予測タスクのうち6つにおいて、最先端のバイオマーカーよりも優れています。
論文 参考訳(メタデータ) (2022-10-28T17:03:04Z) - Deep learning at the edge enables real-time streaming ptychographic
imaging [7.4083593332068975]
プチコグラフィーのようなコヒーレントな顕微鏡技術は、ナノスケールの材料特性に革命をもたらす可能性がある。
従来のアプローチでは、高速コヒーレントイメージング実験からサンプル画像をリアルタイムで回収するのに十分ではない。
ここでは、エッジでの人工知能と高性能コンピューティングを活用して、検出器から直接最大2kHzでストリーミングされるX線写真データのリアルタイムインバージョンを可能にするワークフローを実演する。
論文 参考訳(メタデータ) (2022-09-20T02:02:37Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Ultrafast Focus Detection for Automated Microscopy [0.0]
連続的に収集した電子顕微鏡画像に対する高速な焦点検出アルゴリズムを提案する。
本手法は, 従来のコンピュータビジョン技術に適応し, 様々な微細な組織学的特徴を検出する手法である。
アウト・オブ・フォーカス条件をほぼリアルタイムに検出するテストが実施されている。
論文 参考訳(メタデータ) (2021-08-26T22:24:41Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Deep learning-based super-resolution fluorescence microscopy on small
datasets [20.349746411933495]
ディープラーニングは、技術的障壁を減らし、回折制限画像から超解像を得る可能性を示している。
本稿では,小型データセットと超解像画像の訓練を成功させた畳み込みニューラルネットワークに基づく新しいアプローチを示す。
このモデルは、大規模なトレーニングデータセットの取得が困難なMRIやX線イメージングなどの他のバイオメディカルイメージングモードに適用することができます。
論文 参考訳(メタデータ) (2021-03-07T03:17:47Z) - AS-Net: Fast Photoacoustic Reconstruction with Multi-feature Fusion from
Sparse Data [1.7237160821929758]
光音響イメージングは、従来の光学イメージング技術よりもはるかに大きな深さでの光吸収の高コントラスト画像を得ることができる。
本稿では,スパースPA生データをニューラルネットワークに適したものにするために,新しい信号処理手法を提案する。
次に,多機能核融合を用いたPA再構成のためのアテンションステアリングネットワーク(AS-Net)を提案する。
論文 参考訳(メタデータ) (2021-01-22T03:49:30Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。