論文の概要: Spatio-Temporal Neural Network for Fitting and Forecasting COVID-19
- arxiv url: http://arxiv.org/abs/2103.11860v1
- Date: Mon, 22 Mar 2021 13:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-23 14:51:57.410238
- Title: Spatio-Temporal Neural Network for Fitting and Forecasting COVID-19
- Title(参考訳): 新型コロナウイルス感染予測のための時空間ニューラルネットワーク
- Authors: Yi-Shuai Niu, Wentao Ding, Junpeng Hu, Wenxu Xu and Stephane Canu
- Abstract要約: 我々は、2020年の世界的な新型コロナウイルス感染拡大を予測するため、時空間ニューラルネットワーク(STNN)を構築した。
拡張空間状態STNN(STNN-A)と入力ゲートSTNN(STNN-I)の2つの改良されたSTNNアーキテクチャを提案する。
数値シミュレーションにより、STNNモデルはより正確なフィッティングと予測を提供し、空間データと時間データの両方を扱うことにより、他の多くのモデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 1.1129587851149594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We established a Spatio-Temporal Neural Network, namely STNN, to forecast the
spread of the coronavirus COVID-19 outbreak worldwide in 2020. The basic
structure of STNN is similar to the Recurrent Neural Network (RNN)
incorporating with not only temporal data but also spatial features. Two
improved STNN architectures, namely the STNN with Augmented Spatial States
(STNN-A) and the STNN with Input Gate (STNN-I), are proposed, which ensure more
predictability and flexibility. STNN and its variants can be trained using
Stochastic Gradient Descent (SGD) algorithm and its improved variants (e.g.,
Adam, AdaGrad and RMSProp). Our STNN models are compared with several classical
epidemic prediction models, including the fully-connected neural network
(BPNN), and the recurrent neural network (RNN), the classical curve fitting
models, as well as the SEIR dynamical system model. Numerical simulations
demonstrate that STNN models outperform many others by providing more accurate
fitting and prediction, and by handling both spatial and temporal data.
- Abstract(参考訳): 我々は、2020年の世界的な新型コロナウイルス感染拡大を予測するため、時空間ニューラルネットワーク(STNN)を構築した。
STNNの基本構造は、時間的データだけでなく空間的特徴も取り入れたリカレントニューラルネットワーク(RNN)に似ている。
2つの改良されたSTNNアーキテクチャであるSTNN with Augmented Space States (STNN-A)とSTNN with Input Gate (STNN-I)を提案する。
STNNとその変種は、Stochastic Gradient Descent (SGD)アルゴリズムと改良された変種(例えばAdam、AdaGrad、RMSProp)を使って訓練することができる。
我々のSTNNモデルは、完全連結ニューラルネットワーク(BPNN)やリカレントニューラルネットワーク(RNN)、古典曲線適合モデル、SEIR力学系モデルなど、いくつかの古典的流行予測モデルと比較される。
数値シミュレーションにより、STNNモデルはより正確なフィッティングと予測を提供し、空間データと時間データの両方を扱うことにより、他の多くのモデルよりも優れていることが示された。
関連論文リスト
- Spatial-Temporal Search for Spiking Neural Networks [32.937536365872745]
スパイキングニューラルネットワーク(SNN)は、次世代人工知能の潜在的な候補と考えられている。
空間次元と時間次元の両方でSNNを最適化するための微分可能なアプローチを提案する。
本手法は,96.43%,78.96%,70.21%の精度でCIFAR10/100とImageNetの分類性能を比較検討した。
論文 参考訳(メタデータ) (2024-10-24T09:32:51Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Satellite Anomaly Detection Using Variance Based Genetic Ensemble of
Neural Networks [7.848121055546167]
複数のリカレントニューラルネットワーク(RNN)からの予測の効率的なアンサンブルを用いる。
予測のために、各RNNモデルに対して最適な構造を構築する遺伝的アルゴリズム(GA)によって、各RNNを導出する。
本稿では,BNNの近似版としてモンテカルロ(MC)ドロップアウトを用いる。
論文 参考訳(メタデータ) (2023-02-10T22:09:00Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
スパイキングニューラルネットワーク(SNN)は、符号化された時間信号で情報を検出するユニークな能力を持つ。
SNNをリカレントニューラルネットワーク(RNN)とみなす支配的アプローチのためのモデルとトレーニングアルゴリズムについてレビューする。
スパイキングニューロンの確率モデルに頼り、勾配推定による局所学習規則の導出を可能にする別のアプローチについて述べる。
論文 参考訳(メタデータ) (2020-10-27T11:47:42Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Error-feedback stochastic modeling strategy for time series forecasting
with convolutional neural networks [11.162185201961174]
本稿では,ランダム畳み込みネットワーク(ESM-CNN)ニューラル時系列予測タスクを構築するための新しいError-feedback Modeling (ESM)戦略を提案する。
提案したESM-CNNは、最先端のランダムニューラルネットワークを上回るだけでなく、トレーニングされた最先端のディープニューラルネットワークモデルと比較して、予測能力と計算オーバーヘッドの低減も実現している。
論文 参考訳(メタデータ) (2020-02-03T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。