Fourier-style Quantum State Tomography and Purity Measurement of a
Multi-qubit System from Bloch Rotations
- URL: http://arxiv.org/abs/2101.05860v1
- Date: Thu, 14 Jan 2021 20:38:39 GMT
- Title: Fourier-style Quantum State Tomography and Purity Measurement of a
Multi-qubit System from Bloch Rotations
- Authors: Yariv Yanay, Charles Tahan
- Abstract summary: We consider the use of random-axis measurements for quantum state tomography and state purity estimation.
We propose a simple protocol which relies on single-pulse X/Y rotations only.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state tomography and other measures of the global properties of a
quantum state are indispensable tools in understanding many body physics
through quantum simulators. Unfortunately, the number of experimental
measurements of the system required to estimate these global quantities scales
exponentially with system size. Here, we consider the use of random-axis
measurements for quantum state tomography and state purity estimation. We
perform a general analysis of the statistical deviation in such methods for any
given algorithm. We then propose a simple protocol which relies on single-pulse
X/Y rotations only. We find that it reduces the basis of the exponential
growth, calculating the statistical variance to scale as
$\sum_{a,b}\left\lvert\Delta\rho_{ab}\right\rvert^{2}\sim 5^{N}/N_{\rm tot}$
for full tomography, and $\left(\Delta\mu\right)^{2}\sim 7^{N}/N_{\rm tot}^{2}$
for purity estimation, for $N$ qubits and $N_{\rm tot}$ measurements performed.
Related papers
- Quantum state testing with restricted measurements [30.641152457827527]
We develop an information-theoretic framework that yields unified copy complexity lower bounds for restricted families of non-adaptive measurements.
We demonstrate a separation between these two schemes, showing the power of randomized measurement schemes over fixed ones.
arXiv Detail & Related papers (2024-08-30T17:48:00Z) - Heisenberg-limited adaptive gradient estimation for multiple observables [0.39102514525861415]
In quantum mechanics, measuring the expectation value of a general observable has an inherent statistical uncertainty.
We provide an adaptive quantum algorithm for estimating the expectation values of $M$ general observables within root mean squared error.
Our method paves a new way to precisely understand and predict various physical properties in complicated quantum systems using quantum computers.
arXiv Detail & Related papers (2024-06-05T14:16:47Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - The Cost of Entanglement Renormalization on a Fault-Tolerant Quantum Computer [0.042855555838080824]
We perform a detailed estimate for the prospect of using deep entanglement renormalization ansatz on a fault-tolerant quantum computer.
For probing a relatively large system size, we observe up to an order of magnitude reduction in the number of qubits.
For estimating the energy per site of $epsilon$, $mathcalOleft(fraclog Nepsilon right)$ $T$ gates and $mathcalOleft(log Nright)$ qubits suffice.
arXiv Detail & Related papers (2024-04-15T18:00:17Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - Heisenberg Limit beyond Quantum Fisher Information [0.0]
Using entangled quantum states, it is possible to scale the precision with $N$ better than when resources would be used independently.
I derive bounds on the precision of the estimation for the case of noiseless unitary evolution.
I analyze the problem of the Heisenberg limit when multiple parameters are measured simultaneously on the same physical system.
arXiv Detail & Related papers (2023-04-27T17:43:45Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Lower bounds for learning quantum states with single-copy measurements [3.2590610391507444]
We study the problems of quantum tomography and shadow tomography using measurements performed on individual copies of an unknown $d$-dimensional state.
In particular, this rigorously establishes the optimality of the folklore Pauli tomography" algorithm in terms of its complexity.
arXiv Detail & Related papers (2022-07-29T02:26:08Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Estimating Gibbs partition function with quantumClifford sampling [6.656454497798153]
We develop a hybrid quantum-classical algorithm to estimate the partition function.
Our algorithm requires only a shallow $mathcalO(1)$-depth quantum circuit.
Shallow-depth quantum circuits are considered vitally important for currently available NISQ (Noisy Intermediate-Scale Quantum) devices.
arXiv Detail & Related papers (2021-09-22T02:03:35Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.