Motorcycle System for Optimum Road Safety with Anti-theft Capability
- URL: http://arxiv.org/abs/2101.06096v1
- Date: Wed, 13 Jan 2021 10:58:30 GMT
- Title: Motorcycle System for Optimum Road Safety with Anti-theft Capability
- Authors: Carlo H Godoy Jr
- Abstract summary: Head and neck injuries are the main cause of death, severe injury, and motorcycle users disabilities.
The proposed system is expected to lessen the percentage of accident by avoiding the possible cause of it.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to road traffic accidents, 6941 Filipinos died in 2010, and thousands
more were wounded or disabled. Head and neck injuries are the main cause of
death, severe injury, and motorcycle users disabilities. Motorcycle users make
up a large proportion of those on the road who were killed. The main purpose of
the study is to develop an MCU Based Motorcycle System for Optimum Road Safety
with Anti-theft Capability that will help motorcycle riders to be safe while
travelling in national roads. The researchers will be using the prototyping
methodology where in a prototype is built according to the initial requirements
gathered from the motorists themselves. The expected result of the proposed
methodology is the system will be utilizing the different function of each
modules to ensure that the riders will be able to detect and avoid possible
danger while on the road. As a result of different literature in relation to
each module, the system is expected to provide a new leap to ensure the safety
of all riders here in the Philippines. Future studies will ensure the
development of the system, provide testing and improve the functionality of the
system depending on the test result. Due to the high increase in the number of
cars and motorcycle travelling on national road, the percentage of accidents
also is getting higher. In line with that, the proposed system is expected to
lessen the percentage of accident by avoiding the possible cause of it.
Related papers
- An Explainable Machine Learning Approach to Traffic Accident Fatality Prediction [0.02730969268472861]
Road traffic accidents pose a significant public health threat worldwide.
This study presents a machine learning-based approach for classifying fatal and non-fatal road accident outcomes.
arXiv Detail & Related papers (2024-09-18T12:41:56Z) - On using Machine Learning Algorithms for Motorcycle Collision Detection [0.0]
Impact simulations show that the risk of severe injury or death in the event of a motorcycle-to-car impact can be greatly reduced if the motorcycle is equipped with passive safety measures such as airbags and seat belts.
For the challenge of reliably detecting impending collisions, this paper presents an investigation towards the applicability of machine learning algorithms.
arXiv Detail & Related papers (2024-03-14T15:32:25Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Considering Human Factors in Risk Maps for Robust and Foresighted Driver
Warning [1.4699455652461728]
We propose a warning system that uses human states in the form of driver errors.
The system consists of a behavior planner Risk Maps which directly changes its prediction of the surrounding driving situation.
In different simulations of a dynamic lane change and intersection scenarios, we show how the driver's behavior plan can become unsafe.
arXiv Detail & Related papers (2023-06-06T16:39:58Z) - Real-Time Helmet Violation Detection Using YOLOv5 and Ensemble Learning [4.397520291340696]
This paper presents the development and evaluation of a real-time YOLOv5 Deep Learning (DL) model for detecting riders and passengers on motorbikes.
We trained the model on 100 videos recorded at 10 fps, each for 20 seconds.
The proposed model was tested on 100 test videos and produced an mAP score of 0.5267, ranking 11th on the AI City Track 5 public leaderboard.
arXiv Detail & Related papers (2023-04-14T14:15:56Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Modelling and Detection of Driver's Fatigue using Ontology [60.090278944561184]
Road accidents are the eight leading cause of death all over the world.
Various factors cause driver's fatigue.
Ontological knowledge and rules for driver fatigue detection are to be integrated into an intelligent system.
arXiv Detail & Related papers (2022-08-31T08:42:28Z) - Detecting, Tracking and Counting Motorcycle Rider Traffic Violations on
Unconstrained Roads [27.351236436457445]
In many Asian countries with unconstrained road traffic conditions, driving violations such as not wearing helmets and triple-riding are a significant source of fatalities involving motorcycles.
We propose an approach for detecting, tracking, and counting motorcycle riding violations in videos taken from a vehicle-mounted dashboard camera.
arXiv Detail & Related papers (2022-04-18T15:17:40Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.