論文の概要: Teaming up with information agents
- arxiv url: http://arxiv.org/abs/2101.06133v1
- Date: Fri, 15 Jan 2021 14:26:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-28 15:55:18.159134
- Title: Teaming up with information agents
- Title(参考訳): 情報エージェントと協力し
- Authors: Jurriaan van Diggelen, Wiard Jorritsma, Bob van der Vecht
- Abstract要約: 我々の目的は、人間が情報エージェントとどのように協力できるかを研究することである。
適切なチームデザインパターンを提案し、CIA(Collaborative Intelligence Analysis)ツールを使用してそれらをテストします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the intricacies involved in designing a computer as a teampartner, we
can observe patterns in team behavior which allow us to describe at a general
level how AI systems are to collaborate with humans. Whereas most work on
human-machine teaming has focused on physical agents (e.g. robotic systems),
our aim is to study how humans can collaborate with information agents. We
propose some appropriate team design patterns, and test them using our
Collaborative Intelligence Analysis (CIA) tool.
- Abstract(参考訳): コンピュータをチームパートナとして設計する作業は複雑ですが、チームの振る舞いのパターンを観察することで、AIシステムが人間とどのように協力するかを一般的なレベルで記述することができます。
ヒューマンマシン・チームで働くほとんどの作業は物理的エージェント(例:物理エージェント)に焦点を当てている。
ロボットシステム)の目的は、人間が情報エージェントとどのように協力するかを研究することです。
我々は、適切なチームデザインパターンを提案し、コラボレーティブインテリジェンス分析(CIA)ツールを使ってそれらをテストします。
関連論文リスト
- Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gymは、エージェント、人間、タスク環境間の非同期で三分割的なインタラクションを可能にするフレームワークである。
シミュレーション条件と実環境条件の両方において,Co-Gymを3つの代表的なタスクでインスタンス化する。
その結果、協調作業員はタスクパフォーマンスにおいて、完全に自律的なエージェントよりも一貫して優れていたことが判明した。
論文 参考訳(メタデータ) (2024-12-20T09:21:15Z) - ChatCollab: Exploring Collaboration Between Humans and AI Agents in Software Teams [1.3967206132709542]
ChatCollabの斬新なアーキテクチャは、エージェント(人間またはAI)が任意の役割でコラボレーションに参加することを可能にする。
ソフトウェアエンジニアリングをケーススタディとして使用することで、私たちのAIエージェントが彼らの役割と責任をうまく特定できることが分かりました。
ソフトウェア開発のための従来の3つのマルチエージェントAIシステムに関連して、ChatCollab AIエージェントはインタラクティブなゲーム開発タスクにおいて、同等またはより良いソフトウェアを生成する。
論文 参考訳(メタデータ) (2024-12-02T21:56:46Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
心の理論(ToM)は、他人を理解する上で重要な能力として、人間の協調とコミュニケーションに大きな影響を及ぼす。
Mutual Theory of Mind (MToM) は、ToM能力を持つAIエージェントが人間と協力するときに発生する。
エージェントのToM能力はチームのパフォーマンスに大きな影響を与えず,エージェントの人間的理解を高めていることがわかった。
論文 参考訳(メタデータ) (2024-09-13T13:19:48Z) - The AI Collaborator: Bridging Human-AI Interaction in Educational and Professional Settings [3.506120162002989]
AI CollaboratorはOpenAIのGPT-4を利用しており、人間とAIのコラボレーション研究のために設計された画期的なツールである。
その特長は、研究者がさまざまな実験的なセットアップのためにカスタマイズされたAIペルソナを作成できることだ。
この機能は、チーム設定におけるさまざまな対人的ダイナミクスをシミュレートするために不可欠です。
論文 参考訳(メタデータ) (2024-05-16T22:14:54Z) - Human-Machine Teaming for UAVs: An Experimentation Platform [6.809734620480709]
本稿では,Cogmentの人間-機械協調実験プラットフォームについて紹介する。
学習AIエージェント、静的AIエージェント、人間を含むことができるHMT(Human-machine Teaming)のユースケースを実装している。
我々は,重要なシステムと防衛環境における人間と機械の連携について,さらなる研究を進めたい。
論文 参考訳(メタデータ) (2023-12-18T21:35:02Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Onto4MAT: A Swarm Shepherding Ontology for Generalised Multi-Agent
Teaming [2.9327503320877457]
我々は、Swarm AIがその環境とシステムについて推論できる形式的な知識表現設計を提供する。
我々は,人間とチーム間のより効果的なチーム編成を実現するために,Ontology for Generalized Multi-Agent Teaming(Onto4MAT)を提案する。
論文 参考訳(メタデータ) (2022-03-24T09:36:50Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。