論文の概要: Human-Machine Teaming for UAVs: An Experimentation Platform
- arxiv url: http://arxiv.org/abs/2312.11718v1
- Date: Mon, 18 Dec 2023 21:35:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-20 17:47:20.196175
- Title: Human-Machine Teaming for UAVs: An Experimentation Platform
- Title(参考訳): UAVのための人間-機械チーム:実験プラットフォーム
- Authors: Laila El Moujtahid and Sai Krishna Gottipati and Clod\'eric Mars and
Matthew E. Taylor
- Abstract要約: 本稿では,Cogmentの人間-機械協調実験プラットフォームについて紹介する。
学習AIエージェント、静的AIエージェント、人間を含むことができるHMT(Human-machine Teaming)のユースケースを実装している。
我々は,重要なシステムと防衛環境における人間と機械の連携について,さらなる研究を進めたい。
- 参考スコア(独自算出の注目度): 6.809734620480709
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Full automation is often not achievable or desirable in critical systems with
high-stakes decisions. Instead, human-AI teams can achieve better results. To
research, develop, evaluate, and validate algorithms suited for such teaming,
lightweight experimentation platforms that enable interactions between humans
and multiple AI agents are necessary. However, there are limited examples of
such platforms for defense environments. To address this gap, we present the
Cogment human-machine teaming experimentation platform, which implements
human-machine teaming (HMT) use cases that features heterogeneous multi-agent
systems and can involve learning AI agents, static AI agents, and humans. It is
built on the Cogment platform and has been used for academic research,
including work presented at the ALA workshop at AAMAS this year [1]. With this
platform, we hope to facilitate further research on human-machine teaming in
critical systems and defense environments.
- Abstract(参考訳): 完全自動化は、高スループットの決定を持つクリティカルなシステムでは実現可能でも望ましいものでもない。
代わりに、人間-AIチームはより良い結果を得ることができます。
このようなコラボレーションに適したアルゴリズムを研究、開発、評価、検証するには、人間と複数のAIエージェント間の相互作用を可能にする軽量な実験プラットフォームが必要である。
しかし、そのような防衛環境の例は限られている。
このギャップに対処するために,我々は,多種多様なマルチエージェントシステムを備え,aiエージェント,静的aiエージェント,人間を学習できるヒューマンマシンチーム(hmt)ユースケースを実装する,cogment human-machine teaming experimentation platformを提案する。
Cogmentプラットフォーム上に構築されており、学術研究に使われており、今年AAMASのALAワークショップで発表された作品[1]を含む。
このプラットフォームにより、重要なシステムや防衛環境における人間と機械の連携に関するさらなる研究が促進されることを願っている。
関連論文リスト
- ChatCollab: Exploring Collaboration Between Humans and AI Agents in Software Teams [1.3967206132709542]
ChatCollabの斬新なアーキテクチャは、エージェント(人間またはAI)が任意の役割でコラボレーションに参加することを可能にする。
ソフトウェアエンジニアリングをケーススタディとして使用することで、私たちのAIエージェントが彼らの役割と責任をうまく特定できることが分かりました。
ソフトウェア開発のための従来の3つのマルチエージェントAIシステムに関連して、ChatCollab AIエージェントはインタラクティブなゲーム開発タスクにおいて、同等またはより良いソフトウェアを生成する。
論文 参考訳(メタデータ) (2024-12-02T21:56:46Z) - CREW: Facilitating Human-AI Teaming Research [3.7324091969140776]
我々は,リアルタイム意思決定シナリオにおける人間-AIコラボレーション研究を支援するプラットフォームCREWを紹介する。
これには、認知研究のための事前構築されたタスクや、モジュール設計から拡張可能なポテンシャルを備えたヒューマンAIコラボレーションが含まれます。
CREWは、最先端のアルゴリズムとよく訓練されたベースラインを使用して、リアルタイムの人間誘導型強化学習エージェントをベンチマークする。
論文 参考訳(メタデータ) (2024-07-31T21:43:55Z) - The AI Collaborator: Bridging Human-AI Interaction in Educational and Professional Settings [3.506120162002989]
AI CollaboratorはOpenAIのGPT-4を利用しており、人間とAIのコラボレーション研究のために設計された画期的なツールである。
その特長は、研究者がさまざまな実験的なセットアップのためにカスタマイズされたAIペルソナを作成できることだ。
この機能は、チーム設定におけるさまざまな対人的ダイナミクスをシミュレートするために不可欠です。
論文 参考訳(メタデータ) (2024-05-16T22:14:54Z) - Socially Pertinent Robots in Gerontological Healthcare [78.35311825198136]
本論文は,パリの保育所における患者と同伴者による2つの実験を通じて,社会的・対話的相互作用能力を備えたフルサイズのヒューマノイドロボットを用いて,この疑問に部分的に答えようとする試みである。
特に、ロボットの知覚とアクションスキルが環境の雑多さに対して堅牢であり、さまざまなインタラクションを扱うために柔軟である場合、ユーザーはこの技術を受け入れる。
論文 参考訳(メタデータ) (2024-04-11T08:43:37Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Human-Centered AI for Data Science: A Systematic Approach [48.71756559152512]
HCAI(Human-Centered AI)は、さまざまなヒューマンタスクをサポートするAI技術の設計と実装を目的とした研究活動である。
データサイエンス(DS)に関する一連の研究プロジェクトを使ってHCAIにどのようにアプローチするかをケーススタディとして紹介する。
論文 参考訳(メタデータ) (2021-10-03T21:47:13Z) - Teaming up with information agents [0.0]
我々の目的は、人間が情報エージェントとどのように協力できるかを研究することである。
適切なチームデザインパターンを提案し、CIA(Collaborative Intelligence Analysis)ツールを使用してそれらをテストします。
論文 参考訳(メタデータ) (2021-01-15T14:26:12Z) - Watch-And-Help: A Challenge for Social Perception and Human-AI
Collaboration [116.28433607265573]
我々は、AIエージェントでソーシャルインテリジェンスをテストするための課題であるWatch-And-Help(WAH)を紹介する。
WAHでは、AIエージェントは、人間のようなエージェントが複雑な家庭用タスクを効率的に実行するのを助ける必要がある。
マルチエージェントの家庭環境であるVirtualHome-Socialを構築し、計画と学習ベースのベースラインを含むベンチマークを提供する。
論文 参考訳(メタデータ) (2020-10-19T21:48:31Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
AIシステムは人間中心の方法でトレーニングされ、チームのパフォーマンスに直接最適化されるべきである、と私たちは主張する。
我々は,AIレコメンデーションを受け入れるか,あるいはタスク自体を解決するかを選択する,特定のタイプのAIチームを提案する。
実世界の高精度データセット上での線形モデルと非線形モデルによる実験は、AIが最も正確であることは、最高のチームパフォーマンスに繋がらないことを示している。
論文 参考訳(メタデータ) (2020-04-27T19:06:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。