Rigorous Bounds on the Heating Rate in Thue-Morse Quasiperiodically and
Randomly Driven Quantum Many-Body Systems
- URL: http://arxiv.org/abs/2101.07065v1
- Date: Mon, 18 Jan 2021 13:22:54 GMT
- Title: Rigorous Bounds on the Heating Rate in Thue-Morse Quasiperiodically and
Randomly Driven Quantum Many-Body Systems
- Authors: Takashi Mori, Hongzheng Zhao, Florian Mintert, Johannes Knolle,
Roderich Moessner
- Abstract summary: We derive rigorous, non-perturbative, bounds on the heating rate in quantum many-body systems under Thue-Morse quasi-periodic driving.
Our bound for Thue-Morse quasi-periodic driving suggests that the heating time scales like $(omega/g)-Cln(omega/g)$ with a positive constant $C$ and a typical energy scale $g$ of the Hamiltonian.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The nonequilibrium quantum dynamics of closed many-body systems is a rich yet
challenging field. While recent progress for periodically driven (Floquet)
systems has yielded a number of rigorous results, our understanding on quantum
many-body systems driven by rapidly varying but a- and quasi-periodic driving
is still limited. Here, we derive rigorous, non-perturbative, bounds on the
heating rate in quantum many-body systems under Thue-Morse quasi-periodic
driving and under random multipolar driving, the latter being a tunably
randomized variant of the former. In the process, we derive a static effective
Hamiltonian that describes the transient prethermal state, including the
dynamics of local observables. Our bound for Thue-Morse quasi-periodic driving
suggests that the heating time scales like $(\omega/g)^{-C\ln(\omega/g)}$ with
a positive constant $C$ and a typical energy scale $g$ of the Hamiltonian, in
agreement with our numerical simulations.
Related papers
- Semiclassical Quantum Trajectories in the Monitored Lipkin-Meshkov-Glick Model [41.94295877935867]
We investigate the dynamics of the Lipkin-Meshkov-Glick model, composed of $N$ all-to-all interacting spins $1/2$, under a weak external monitoring.
We derive a set of semiclassical equations describing the evolution of the expectation values of global spin observables, which become exact in the thermodynamic limit.
The transition is not affected by post-selection issues, as it is already visible at the level of ensemble averages.
arXiv Detail & Related papers (2024-07-29T18:00:00Z) - Prethermalization in the PXP Model under Continuous Quasiperiodic Driving [0.0]
We investigate the dynamics of a quasiperiodically driven Rydberg atom chain in the strong Rydberg blockage regime.
Even without driving, the PXP model exhibits many-body scarring and resultant persistent oscillations.
Our results demonstrate that continuous quasi-periodic drive protocols can provide a promising route to realize prethermal phases of matter.
arXiv Detail & Related papers (2024-06-03T15:30:02Z) - Dynamics of Pseudoentanglement [0.03320194947871346]
dynamics of quantum entanglement plays a central role in explaining the emergence of thermal equilibrium in isolated many-body systems.
Recent works have introduced a notion of pseudoentanglement describing ensembles of many-body states.
This prompts the question: how much entanglement is truly necessary to achieve thermal equilibrium in quantum systems?
arXiv Detail & Related papers (2024-03-14T17:54:27Z) - Periodically and quasiperiodically driven-anisotropic Dicke model [0.0]
We analyze the anisotropic Dicke model in the presence of a periodic drive and under a quasiperiodic drive.
We show that under a quasiperiodic Fibonacci (Thue-Morse) drive, the system features a prethermal plateau that increases as an exponential with the driving frequency before heating to an infinite-temperature state.
Surprisingly, this value does not always approach the infinite-temperature state monotonically as the frequency of the periodic drive decreases.
arXiv Detail & Related papers (2023-06-29T09:44:52Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Random multipolar driving: tunably slow heating through spectral
engineering [0.0]
We study heating in quantum many-body systems driven by $n-$multipolar sequences.
A simple theory based on Fermi's golden exponent accounts for this behaviour.
Despite the absence of periodicity in the drive, the prethermal regime can host versatile non-equilibrium phases.
arXiv Detail & Related papers (2020-07-14T18:55:45Z) - Restoring coherence via aperiodic drives in a many-body quantum system [0.0]
We study the unitary dynamics of randomly or quasi-periodically driven tilted Bose-Hubbard (tBH) model in one dimension deep inside its Mott phase.
We show that starting from a regime where the periodic drive leads to rapid thermalization, a random drive, which consists of a random sequence of square pulses with period $T+alpha dT$, restores coherent oscillations for special values of $dT$.
A similar phenomenon can be seen for a quasi-periodic drive following a Thue-Morse sequence where such coherent behavior is shown to occur for a larger number of points in the $
arXiv Detail & Related papers (2020-02-20T11:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.