論文の概要: An Improvement of Object Detection Performance using Multi-step Machine
Learnings
- arxiv url: http://arxiv.org/abs/2101.07571v1
- Date: Tue, 19 Jan 2021 11:32:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 11:19:36.162112
- Title: An Improvement of Object Detection Performance using Multi-step Machine
Learnings
- Title(参考訳): 多段階機械学習による物体検出性能の向上
- Authors: Tomoe Kishimoto, Masahiko Saito, Junichi Tanaka, Yutaro Iiyama, Ryu
Sawada and Koji Terashi
- Abstract要約: 本稿では,キャリブレーションモデルと呼ばれる後処理ステップを導入するマルチステップ概念に基づく物体検出の強化について述べる。
キャリブレーションモデルは畳み込みニューラルネットワークで構成され、入力のドメイン知識に基づいてリッチなコンテキスト情報を利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connecting multiple machine learning models into a pipeline is effective for
handling complex problems. By breaking down the problem into steps, each
tackled by a specific component model of the pipeline, the overall solution can
be made accurate and explainable. This paper describes an enhancement of object
detection based on this multi-step concept, where a post-processing step called
the calibration model is introduced. The calibration model consists of a
convolutional neural network, and utilizes rich contextual information based on
the domain knowledge of the input. Improvements of object detection performance
by 0.8-1.9 in average precision metric over existing object detectors have been
observed using the new model.
- Abstract(参考訳): 複数の機械学習モデルをパイプラインに接続することは、複雑な問題に対処するのに有効である。
問題をステップに分割することで、それぞれがパイプラインの特定のコンポーネントモデルに取り組まれ、全体的なソリューションを正確かつ説明可能である。
本稿では,キャリブレーションモデルと呼ばれる後処理ステップを導入するマルチステップ概念に基づく物体検出の強化について述べる。
キャリブレーションモデルは畳み込みニューラルネットワークで構成され、入力のドメイン知識に基づいてリッチなコンテキスト情報を利用する。
既存の物体検出器よりも平均精度の0.8-1.9倍の物体検出性能の向上が観測されている。
関連論文リスト
- Model-agnostic Body Part Relevance Assessment for Pedestrian Detection [4.405053430046726]
歩行者検出のための身体部分関連性評価によるコンピュータビジョンコンテキストにおけるサンプリングに基づく説明モデルを用いたフレームワークを提案する。
我々は,KernelSHAPに類似した新しいサンプリングベース手法を導入し,サンプリングサイズを小さくするために,より堅牢性を示し,大規模データセットにおける説明可能性解析に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-27T10:10:25Z) - Dynamic Tiling: A Model-Agnostic, Adaptive, Scalable, and
Inference-Data-Centric Approach for Efficient and Accurate Small Object
Detection [3.8332251841430423]
Dynamic Tilingは、小さなオブジェクト検出のためのモデルに依存しない、適応的でスケーラブルなアプローチである。
本手法は, フラグメントオブジェクトを効果的に解決し, 検出精度を向上し, 計算オーバーヘッドを最小限に抑える。
全体として、Dynamic Tilingは既存のモデルに依存しない一様収穫法よりも優れている。
論文 参考訳(メタデータ) (2023-09-20T05:25:12Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
本稿では,物体検出精度を受容場の変化の観点から改善する手法を提案する。
YOLOv5の頭部の構造は、非対称なプール層を付加することによって改変される。
本稿では, 従来の YOLOv5 モデルと比較し, いくつかのパラメータから解析する。
論文 参考訳(メタデータ) (2023-03-15T23:59:18Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Chosen methods of improving object recognition of small objects with
weak recognizable features [0.0]
適切なGANモデルを使用することで、その量と多様性を増大させる低精度データの増大が可能になる。
本研究では,VOC Pascalデータセット上での小さなオブジェクト検出を改善するため,拡張型GAN法を提案する。
論文 参考訳(メタデータ) (2022-08-29T13:39:02Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
本稿では,事前学習した畳み込みニューラルネットモデルを用いて特徴抽出とコンテキストマイニングを行う方法について述べる。
我々は,高レベルの特徴から文脈特性を導出し,ビデオ異常検出法の性能をさらに向上させる。
論文 参考訳(メタデータ) (2020-10-06T00:26:14Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - Condensing Two-stage Detection with Automatic Object Key Part Discovery [87.1034745775229]
2段階の物体検出器は通常、高い精度を達成するために、検出ヘッドのために過度に大きなモデルを必要とする。
そこで本研究では,2段階検出ヘッドのモデルパラメータを,対象キー部分に集中させることで縮合・縮小できることを示す。
提案手法は、一般的な2段検出ヘッドのモデルパラメータの約50%を放棄しながら、元の性能を一貫して維持する。
論文 参考訳(メタデータ) (2020-06-10T01:20:47Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。