An Improvement of Object Detection Performance using Multi-step Machine
Learnings
- URL: http://arxiv.org/abs/2101.07571v1
- Date: Tue, 19 Jan 2021 11:32:27 GMT
- Title: An Improvement of Object Detection Performance using Multi-step Machine
Learnings
- Authors: Tomoe Kishimoto, Masahiko Saito, Junichi Tanaka, Yutaro Iiyama, Ryu
Sawada and Koji Terashi
- Abstract summary: This paper describes an enhancement of object detection based on a multi-step concept, where a post-processing step called the calibration model is introduced.
The calibration model consists of a convolutional neural network, and utilizes rich contextual information based on the domain knowledge of the input.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Connecting multiple machine learning models into a pipeline is effective for
handling complex problems. By breaking down the problem into steps, each
tackled by a specific component model of the pipeline, the overall solution can
be made accurate and explainable. This paper describes an enhancement of object
detection based on this multi-step concept, where a post-processing step called
the calibration model is introduced. The calibration model consists of a
convolutional neural network, and utilizes rich contextual information based on
the domain knowledge of the input. Improvements of object detection performance
by 0.8-1.9 in average precision metric over existing object detectors have been
observed using the new model.
Related papers
- Model-agnostic Body Part Relevance Assessment for Pedestrian Detection [4.405053430046726]
We present a framework for using sampling-based explanation models in a computer vision context by body part relevance assessment for pedestrian detection.
We introduce a novel sampling-based method similar to KernelSHAP that shows more robustness for lower sampling sizes and, thus, is more efficient for explainability analyses on large-scale datasets.
arXiv Detail & Related papers (2023-11-27T10:10:25Z) - Dynamic Tiling: A Model-Agnostic, Adaptive, Scalable, and
Inference-Data-Centric Approach for Efficient and Accurate Small Object
Detection [3.8332251841430423]
Dynamic Tiling is a model-agnostic, adaptive, and scalable approach for small object detection.
Our method effectively resolves fragmented objects, improves detection accuracy, and minimizes computational overhead.
Overall, Dynamic Tiling outperforms existing model-agnostic uniform cropping methods.
arXiv Detail & Related papers (2023-09-20T05:25:12Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Chosen methods of improving object recognition of small objects with
weak recognizable features [0.0]
Using proper GAN model would enable augmenting low precision data increasing their amount and diversity.
In this work the GAN-based method with augmentation is presented to improve small object detection on VOC Pascal dataset.
arXiv Detail & Related papers (2022-08-29T13:39:02Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
We propose a neural network-based meta-learning method for supervised anomaly detection.
We experimentally demonstrate that the proposed method achieves better performance than existing anomaly detection and few-shot learning methods.
arXiv Detail & Related papers (2021-03-01T01:43:04Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
We show how to use pre-trained convolutional neural net models to perform feature extraction and context mining.
We derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method.
arXiv Detail & Related papers (2020-10-06T00:26:14Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Condensing Two-stage Detection with Automatic Object Key Part Discovery [87.1034745775229]
Two-stage object detectors generally require excessively large models for their detection heads to achieve high accuracy.
We propose that the model parameters of two-stage detection heads can be condensed and reduced by concentrating on object key parts.
Our proposed technique consistently maintains original performance while waiving around 50% of the model parameters of common two-stage detection heads.
arXiv Detail & Related papers (2020-06-10T01:20:47Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.