論文の概要: Continual Deterioration Prediction for Hospitalized COVID-19 Patients
- arxiv url: http://arxiv.org/abs/2101.07581v1
- Date: Tue, 19 Jan 2021 12:03:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 11:16:33.387681
- Title: Continual Deterioration Prediction for Hospitalized COVID-19 Patients
- Title(参考訳): 入院患者の経時的劣化予測
- Authors: Jiacheng Liu, Meghna Singh, Catherine ST.Hill, Vino Raj, Lisa
Kirkland, Jaideep Srivastava
- Abstract要約: 病院滞在終了時の患者結果の日次予測を行うための時間的階層化手法を開発した。
予備実験では、連続劣化予測における0.98 AUROC、0.91 F1スコアおよび0.97AUPRを示す。
- 参考スコア(独自算出の注目度): 3.3581926090154113
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Leading up to August 2020, COVID-19 has spread to almost every country in the
world, causing millions of infected and hundreds of thousands of deaths. In
this paper, we first verify the assumption that clinical variables could have
time-varying effects on COVID-19 outcomes. Then, we develop a temporal
stratification approach to make daily predictions on patients' outcome at the
end of hospital stay. Training data is segmented by the remaining length of
stay, which is a proxy for the patient's overall condition. Based on this, a
sequence of predictive models are built, one for each time segment. Thanks to
the publicly shared data, we were able to build and evaluate prototype models.
Preliminary experiments show 0.98 AUROC, 0.91 F1 score and 0.97 AUPR on
continuous deterioration prediction, encouraging further development of the
model as well as validations on different datasets. We also verify the key
assumption which motivates our method. Clinical variables could have
time-varying effects on COVID-19 outcomes. That is to say, the feature
importance of a variable in the predictive model varies at different disease
stages.
- Abstract(参考訳): 2020年8月までに、新型コロナウイルス(COVID-19)は世界のほぼすべての国に広がり、何百万人もの感染者と数十万人の死者を出した。
本稿では,臨床変数がcovid-19の予後に時間的変動をもたらすという仮定を最初に検証する。
そこで我々は,病院滞在終了時の患者結果の日次予測を行うための時間的階層化アプローチを開発した。
トレーニングデータは、患者の全体的な状態のプロキシである残りの滞在期間によってセグメント化される。
これに基づいて、各時間セグメント毎に1つの予測モデルが構築される。
公開データのおかげで、プロトタイプモデルの構築と評価が可能になりました。
予備実験では、0.98 AUROC、0.91 F1スコア、0.97 AUPRの連続劣化予測が示され、モデルの発展と異なるデータセットの検証が促進された。
また、我々の手法を動機づける重要な仮定を検証する。
臨床変数は、COVID-19の結果に時間的に影響する可能性がある。
つまり、予測モデルにおける変数の特徴の重要性は、病気の段階によって異なる。
関連論文リスト
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
我々は、新型コロナウイルス陽性の米国の患者の大規模な(110ドル以上)コホートでの入院を予測するために、さまざまなAIモデルを開発した。
高いデータアンバランスにもかかわらず、モデルは平均精度0.96-0.98 (0.75-0.85)、リコール0.96-0.98 (0.74-0.85)、F_score097-0.98 (0.79-0.83)に達する。
論文 参考訳(メタデータ) (2021-10-28T10:23:38Z) - Deep learning-based COVID-19 pneumonia classification using chest CT
images: model generalizability [54.86482395312936]
深層学習(DL)分類モデルは、異なる国の3DCTデータセット上で、COVID-19陽性患者を特定するために訓練された。
我々は、データセットと72%の列車、8%の検証、20%のテストデータを組み合わせたDLベースの9つの同一分類モデルを訓練した。
複数のデータセットでトレーニングされ、トレーニングに使用されるデータセットの1つからテストセットで評価されたモデルは、よりよいパフォーマンスを示した。
論文 参考訳(メタデータ) (2021-02-18T21:14:52Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
疫学領域における新型コロナウイルスの流行を予測するための機械学習(ML)アプローチの比較分析を行った。
これらの結果から,短期的政策の意思決定を支援するMLアルゴリズムの利点が明らかになった。
論文 参考訳(メタデータ) (2021-02-11T11:57:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z) - A self-supervised neural-analytic method to predict the evolution of
COVID-19 in Romania [10.760851506126105]
我々は、感染症の古典的な確立されたモデルであるSEIRの改良版を使用している。
本稿では,修正SEIRモデルパラメータの正しいセットを推定するために,深層畳み込みネットワークを訓練するための自己教師型アプローチを提案する。
ルーマニアの死亡率が約0.3%である場合、楽観的な結果が得られ、我々のモデルが今後最大3週間の日々の死亡数を正確に予測できることを示した。
論文 参考訳(メタデータ) (2020-06-23T12:00:04Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
術後に重篤な症状を発症するかどうかを判定するための共同分類法と回帰法を提案する。
提案手法は,各試料の重量を考慮し,外乱の影響を低減し,不均衡な分類の問題を検討する。
提案手法では, 重症症例の予測精度76.97%, 相関係数0.524, 変換時間0.55日差が得られた。
論文 参考訳(メタデータ) (2020-05-07T12:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。