Non-Bloch quench dynamics
- URL: http://arxiv.org/abs/2101.07963v1
- Date: Wed, 20 Jan 2021 04:42:34 GMT
- Title: Non-Bloch quench dynamics
- Authors: Tianyu Li, Jia-Zheng Sun, Yong-Sheng Zhang, and Wei Yi
- Abstract summary: We study the quench dynamics of non-Hermitian models with non-Hermitian skin effects.
We find that emergent topological structures, in the form of dynamic skyrmions, exist in the generalized momentum-time domain.
- Score: 6.575131510939151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the quench dynamics of non-Hermitian topological models with
non-Hermitian skin effects. Adopting the non-Bloch band theory and projecting
quench dynamics onto the generalized Brillouin zone, we find that emergent
topological structures, in the form of dynamic skyrmions, exist in the
generalized momentum-time domain, and are correlated with the non-Bloch
topological invariants of the static Hamiltonians. The skyrmion structures
anchor on the fixed points of dynamics whose existence are conditional on the
coincidence of generalized Brillouin zones of the pre- and post-quench
Hamiltonians. Global signatures of dynamic skyrmions, however, persist well
beyond such a condition, thus offering a general dynamic detection scheme for
non-Bloch topology in the presence of non-Hermitian skin effects. Applying our
theory to an experimentally relevant, non-unitary quantum walk, we explicitly
demonstrate how the non-Bloch topological invariants can be revealed through
the non-Bloch quench dynamics.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Non-Hermitian dynamical topological winding in photonic mesh lattices [0.0]
Topological winding in non-Hermitian systems are generally associated to the Bloch band properties of lattice Hamiltonians.
In certain non-Hermitian models topological winding naturally arise from the dynamical evolution of the system and related to a new form of geometric phase.
arXiv Detail & Related papers (2024-07-01T17:59:15Z) - Dynamical topology of chiral and nonreciprocal state transfers in a non-Hermitian quantum system [11.467872077398688]
We study topological chiral and nonreciprocal dynamics by encircling the exceptional points (EPs) of non-Hermitian Hamiltonians in a trapped ion system.
These dynamics are topologically robust against external perturbations even in the presence dissipation-induced nonadiabatic processes.
Our results mark a significant step towards exploring topological properties of open quantum systems.
arXiv Detail & Related papers (2024-06-05T07:51:58Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Non-Bloch dynamics and topology in a classical non-equilibrium process [6.787112704740002]
The non-Hermitian skin effect refers to the accumulation of eigenstates near the boundary in open boundary lattice models.
Our study highlights the significant and general role of non-Bloch topology in non-equilibrium dynamics.
arXiv Detail & Related papers (2023-06-19T18:15:03Z) - Observation of non-Hermitian edge burst in quantum dynamics [4.836111090297333]
We experimentally observe a boundary-induced dynamical phenomenon known as the non-Hermitian edge burst.
In contrast to the eigenstate localization, the edge burst represents a generic non-Hermitian dynamical phenomenon that occurs in real time.
arXiv Detail & Related papers (2023-03-22T18:00:02Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Detecting non-Bloch topological invariants in quantum dynamics [7.544412038291252]
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian systems.
We report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks.
Our work sheds new light on the experimental investigation of non-Hermitian topology.
arXiv Detail & Related papers (2021-07-30T16:40:30Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.