Quasiprobability decompositions with reduced sampling overhead
- URL: http://arxiv.org/abs/2101.09290v2
- Date: Wed, 10 Nov 2021 15:27:15 GMT
- Title: Quasiprobability decompositions with reduced sampling overhead
- Authors: Christophe Piveteau, David Sutter, Stefan Woerner
- Abstract summary: Quantum error mitigation techniques can reduce noise on current quantum hardware without the need for fault-tolerant quantum error correction.
We present a new algorithm based on mathematical optimization that aims to choose the quasiprobability decomposition in a noise-aware manner.
- Score: 4.38301148531795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error mitigation techniques can reduce noise on current quantum
hardware without the need for fault-tolerant quantum error correction. For
instance, the quasiprobability method simulates a noise-free quantum computer
using a noisy one, with the caveat of only producing the correct expected
values of observables. The cost of this error mitigation technique manifests as
a sampling overhead which scales exponentially in the number of corrected
gates. In this work, we present a new algorithm based on mathematical
optimization that aims to choose the quasiprobability decomposition in a
noise-aware manner. This directly leads to a significantly lower basis of the
sampling overhead compared to existing approaches. A key element of the novel
algorithm is a robust quasiprobability method that allows for a tradeoff
between an approximation error and the sampling overhead via semidefinite
programming.
Related papers
- Space-Efficient Quantum Error Reduction without log Factors [50.10645865330582]
We present a new highly simplified construction of a purifier, that can be understood as a weighted walk on a line similar to a random walk interpretation of majority voting.
Our purifier has exponentially better space complexity than the previous one, and quadratically better dependence on the soundness-completeness gap of the algorithm being purified.
arXiv Detail & Related papers (2025-02-13T12:04:39Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Application of zero-noise extrapolation-based quantum error mitigation to a silicon spin qubit [0.08603957004874943]
We report the implementation of a zero-noise extrapolation-based error mitigation technique on a silicon spin qubit platform.
This technique has been successfully demonstrated for other platforms such as superconducting qubits, trapped-ion qubits, and photonic processors.
arXiv Detail & Related papers (2024-10-14T09:51:21Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Inverted-circuit zero-noise extrapolation for quantum gate error mitigation [0.0]
We propose a simple method for estimating the strength of errors occurring in a quantum circuit.
The method determines the error strength for a circuit by appending to it the inverted circuit and measuring the probability of the initial state.
Our method proves to be particularly effective on current hardware, showcasing its suitability for near-term quantum computing applications.
arXiv Detail & Related papers (2024-03-03T20:27:27Z) - Error Mitigation Thresholds in Noisy Random Quantum Circuits [0.30723404270319693]
We study the robustness of probabilistic error cancellation and tensor network error mitigation when the noise is imperfectly characterized.
For one-dimensional circuits, error mitigation fails at an $mathcalO(1)$ time for any imperfection in the characterization of disorder.
We discuss further implications for tests of quantum computational advantage, fault-tolerant probes of measurement-induced phase transitions, and quantum algorithms in near-term devices.
arXiv Detail & Related papers (2023-02-08T19:00:01Z) - Error-aware Quantization through Noise Tempering [43.049102196902844]
Quantization-aware training (QAT) optimize model parameters with respect to the end task while simulating quantization error.
In this work, we incorporate exponentially decaying quantization-error-aware noise together with a learnable scale of task loss gradient to approximate the effect of a quantization operator.
Our method obtains state-of-the-art top-1 classification accuracy for uniform (non mixed-precision) quantization, out-performing previous methods by 0.5-1.2% absolute.
arXiv Detail & Related papers (2022-12-11T20:37:50Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Fundamental limits of quantum error mitigation [0.0]
We show how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead.
Our results provide a means to identify when a given quantum error-mitigation strategy is optimal and when there is potential room for improvement.
arXiv Detail & Related papers (2021-09-09T17:56:14Z) - Multi-exponential Error Extrapolation and Combining Error Mitigation
Techniques for NISQ Applications [0.0]
Noise in quantum hardware remains the biggest roadblock for the implementation of quantum computers.
Error extrapolation is an error mitigation technique that has been successfully implemented experimentally.
We extend this to multi-exponential error extrapolation and provide more rigorous proof for its effectiveness under Pauli noise.
arXiv Detail & Related papers (2020-07-02T17:18:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.