Fault Tolerance Embedded in a Quantum-Gap-Estimation Algorithm with Trial-State Optimization
- URL: http://arxiv.org/abs/2405.10306v1
- Date: Thu, 16 May 2024 17:57:15 GMT
- Title: Fault Tolerance Embedded in a Quantum-Gap-Estimation Algorithm with Trial-State Optimization
- Authors: Woo-Ram Lee, Nathan M. Myers, V. W. Scarola,
- Abstract summary: We show that the spectral peak of an exact target gap can be amplified beyond the noise threshold, thereby reducing gap-estimate error.
Our results reveal the potential for accurate quantum simulations on near-term noisy quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We construct a hybrid quantum algorithm to estimate gaps in many-body energy spectra and prove that it is inherently fault-tolerant to global multi-qubit depolarizing noise. Using trial-state optimization without active error correction, we show that the spectral peak of an exact target gap can be amplified beyond the noise threshold, thereby reducing gap-estimate error. We numerically verify fault tolerance using the Qiskit Aer simulator with a model of common mid-circuit noise channels. Our results reveal the potential for accurate quantum simulations on near-term noisy quantum computers.
Related papers
- Non-Markovian Noise Mitigation: Practical Implementation, Error Analysis, and the Role of Environment Spectral Properties [3.1003326924534482]
We propose a non-Markovian Noise Mitigation(NMNM) method by extending the probabilistic error cancellation (PEC) method in the QEM framework to treat non-Markovian noise.
We establish a direct connection between the overall approximation error and sampling overhead of QEM and the spectral property of the environment.
arXiv Detail & Related papers (2025-01-09T07:22:06Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Noise-induced transition in optimal solutions of variational quantum
algorithms [0.0]
Variational quantum algorithms are promising candidates for delivering practical quantum advantage on noisy quantum hardware.
We study the effect of noise on optimization by studying a variational quantum eigensolver (VQE) algorithm calculating the ground state of a spin chain model.
arXiv Detail & Related papers (2024-03-05T08:31:49Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Robust ground-state energy estimation under depolarizing noise [4.969229261095783]
We present a novel ground-state energy estimation algorithm that is robust under global depolarizing error channels.
Our research demonstrates the feasibility of ground-state energy estimation in the presence of depolarizing noise.
arXiv Detail & Related papers (2023-07-20T22:30:12Z) - Leveraging hardware-control imperfections for error mitigation via
generalized quantum subspace [0.8399688944263843]
In the era of quantum computing without full fault-tolerance, it is essential to suppress noise effects via the quantum error mitigation techniques to enhance the computational power of the quantum devices.
One of the most effective noise-agnostic error mitigation schemes is the generalized quantum subspace expansion (GSE) method.
We propose the fault-subspace method, which constructs an error-mitigated quantum state with copies of quantum states with different noise levels.
arXiv Detail & Related papers (2023-03-14T07:01:30Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.