Machine Learning Based Early Fire Detection System using a Low-Cost
Drone
- URL: http://arxiv.org/abs/2101.09362v1
- Date: Thu, 21 Jan 2021 16:18:42 GMT
- Title: Machine Learning Based Early Fire Detection System using a Low-Cost
Drone
- Authors: Ay\c{s}eg\"ul Yan{\i}k, Mehmet Serdar G\"uzel, Mertkan Yan{\i}k, Erkan
Bostanc{\i}
- Abstract summary: This paper proposes a new machine learning based system for forest fire earlier detection in a low-cost and accurate manner.
The microcontroller in the system has been programmed by training with deep learning methods.
The unmanned aerial vehicle has been given the ability to recognize the smoke, the earliest sign of fire detection.
- Score: 0.5161531917413706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a new machine learning based system for forest fire
earlier detection in a low-cost and accurate manner. Accordingly, it is aimed
to bring a new and definite perspective to visual detection in forest fires. A
drone is constructed for this purpose. The microcontroller in the system has
been programmed by training with deep learning methods, and the unmanned aerial
vehicle has been given the ability to recognize the smoke, the earliest sign of
fire detection. The common problem in the prevalent algorithms used in fire
detection is the high false alarm and overlook rates. Confirming the result
obtained from the visualization with an additional supervision stage will
increase the reliability of the system as well as guarantee the accuracy of the
result. Due to the mobile vision ability of the unmanned aerial vehicle, the
data can be controlled from any point of view clearly and continuously. System
performance are validated by conducting experiments in both simulation and
physical environments.
Related papers
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone
Networks [6.313148708539912]
wildfire detection in remote and forest areas is crucial for minimizing devastation and preserving ecosystems.
Drones offer agile access to remote, challenging terrains, equipped with advanced imaging technology.
limited computation and battery resources pose challenges in implementing and efficient image classification models.
This paper aims to develop a real-time image classification and fire segmentation model.
arXiv Detail & Related papers (2024-01-16T04:16:46Z) - A comprehensive survey of research towards AI-enabled unmanned aerial
systems in pre-, active-, and post-wildfire management [6.043705525669726]
Wildfires have emerged as one of the most destructive natural disasters worldwide, causing catastrophic losses in both human lives and forest wildlife.
Recently, the use of Artificial Intelligence (AI) in wildfires, propelled by the integration of Unmanned Aerial Vehicles (UAVs) and deep learning models, has created an unprecedented momentum to implement and develop more effective wildfire management.
arXiv Detail & Related papers (2024-01-04T05:09:35Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Unsupervised Wildfire Change Detection based on Contrastive Learning [1.53934570513443]
The accurate characterization of the severity of the wildfire event contributes to the characterization of the fuel conditions in fire-prone areas.
The aim of this study is to develop an autonomous system built on top of high-resolution multispectral satellite imagery, with an advanced deep learning method for detecting burned area change.
arXiv Detail & Related papers (2022-11-26T20:13:14Z) - Detecting and Identifying Optical Signal Attacks on Autonomous Driving
Systems [25.32946739108013]
We propose a framework to detect and identify sensors that are under attack.
Specifically, we first develop a new technique to detect attacks on a system that consists of three sensors.
In our study, we use real data sets and the state-of-the-art machine learning model to evaluate our attack detection scheme.
arXiv Detail & Related papers (2021-10-20T12:21:04Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.