Photonic Chern insulators from two-dimensional atomic lattices
interacting with a single surface plasmon polariton
- URL: http://arxiv.org/abs/2101.09370v1
- Date: Fri, 22 Jan 2021 22:42:00 GMT
- Title: Photonic Chern insulators from two-dimensional atomic lattices
interacting with a single surface plasmon polariton
- Authors: Rituraj, Meir Orenstein, Shanhui Fan
- Abstract summary: We study the polaritonic bandstructure of two-dimensional atomic lattices coupled to a single excitation of a surface plasmon polariton mode.
We show the possibility of realizing topological gaps with different Chern numbers by having resonant atomic transitions to excited states with different angular momentum.
- Score: 1.5147172044848798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the polaritonic bandstructure of two-dimensional atomic lattices
coupled to a single excitation of a surface plasmon polariton mode. We show the
possibility of realizing topological gaps with different Chern numbers by
having resonant atomic transitions to excited states with different angular
momentum. We employ a computational method based on the recently proposed
Dirichlet-to-Neumann (DtN) map technique which accurately models non-Markovian
dynamics as well as interactions involving higher-order electric and magnetic
multipole transitions. We design topologically robust edge states which are
used to achieve unidirectional emission and non-reciprocal transmission of
single photons. We also point out the challenges in realizing bands with higher
Chern numbers in such systems.
Related papers
- Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Manipulating growth and propagation of correlations in dipolar
multilayers: From pair production to bosonic Kitaev models [0.0]
We map the many-body spin dynamics to bosonic models.
In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics.
In multi-layer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction.
arXiv Detail & Related papers (2022-11-22T19:00:01Z) - Perspective on real-space nanophotonic field manipulation using
non-perturbative light-matter coupling [0.0]
We develop a theory describing multi-mode light-matter coupling in systems of reduced dimensionality.
We show how the interference between different photonic resonances can modify the real-space shape of the electromagnetic field associated with each polariton mode.
arXiv Detail & Related papers (2022-07-24T08:29:50Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems: insights on the second excitation manifold [0.0]
This work contrasts predictions from the Tavis-Cummings (TC) model, in which the material is a collection of two-level systems.
We simplify the brute-force diagonalization of a gigantic $N2times N2$ Hamiltonian.
We find resonant conditions between bipolaritons and anharmonic transitions where two-photon absorption can be enhanced.
arXiv Detail & Related papers (2022-02-03T06:33:42Z) - Formation of Matter-Wave Polaritons in an Optical Lattice [0.0]
polariton is a quasiparticle formed by strong coupling of a photon to a matter excitation.
We develop an ultracold-atom analogue of an exciton-polariton system in which interacting polaritonic phases can be studied.
Our work opens up novel possibilities for studies of polaritonic quantum matter.
arXiv Detail & Related papers (2021-09-06T04:46:31Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Multimode-polariton superradiance via Floquet engineering [55.41644538483948]
We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven by a far detuned laser.
We show that a strong, dispersive atom-photon coupling can be reached for many transverse cavity modes at once.
The resulting Floquet polaritons involve a superposition of a set of cavity modes with a density of excitation of the atomic cloud.
arXiv Detail & Related papers (2020-11-24T19:00:04Z) - Quantum Many-Body Physics with Ultracold Polar Molecules: Nanostructured
Potential Barriers and Interactions [2.409938612878261]
We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum phases.
The main idea is to modulate both single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers.
arXiv Detail & Related papers (2020-01-31T12:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.