Adaptively Sparse Regularization for Blind Image Restoration
- URL: http://arxiv.org/abs/2101.09401v1
- Date: Sat, 23 Jan 2021 02:40:01 GMT
- Title: Adaptively Sparse Regularization for Blind Image Restoration
- Authors: Ningshan Xu
- Abstract summary: Blind image restoration is widely used to improve image quality.
The main goal is to faithfully estimate the blur kernel and the latent sharp image.
In this study, an adaptively sparse regularized minimization method is proposed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image quality is the basis of image communication and understanding tasks.
Due to the blur and noise effects caused by imaging, transmission and other
processes, the image quality is degraded. Blind image restoration is widely
used to improve image quality, where the main goal is to faithfully estimate
the blur kernel and the latent sharp image. In this study, based on
experimental observation and research, an adaptively sparse regularized
minimization method is originally proposed. The high-order gradients combine
with low-order ones to form a hybrid regularization term, and an adaptive
operator derived from the image entropy is introduced to maintain a good
convergence. Extensive experiments were conducted on different blur kernels and
images. Compared with existing state-of-the-art blind deblurring methods, our
method demonstrates superiority on the recovery accuracy.
Related papers
- Context-Aware Optimal Transport Learning for Retinal Fundus Image Enhancement [1.8339026473337505]
This paper proposes a context-informed optimal transport (OT) learning framework for tackling unpaired fundus image enhancement.
We derive the proposed context-aware OT using the earth's distance mover and show that the proposed context-OT has a solid theoretical guarantee.
Experimental results on a large-scale dataset demonstrate the superiority of the proposed method over several state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2024-09-12T09:14:37Z) - Prompt Recovery for Image Generation Models: A Comparative Study of Discrete Optimizers [58.50071292008407]
We present the first head-to-head comparison of recent discrete optimization techniques for the problem of prompt inversion.
We find that focusing on the CLIP similarity between the inverted prompts and the ground truth image acts as a poor proxy for the similarity between ground truth image and the image generated by the inverted prompts.
arXiv Detail & Related papers (2024-08-12T21:35:59Z) - Retinal Image Restoration and Vessel Segmentation using Modified
Cycle-CBAM and CBAM-UNet [0.7868449549351486]
A cycle-consistent generative adversarial network (CycleGAN) with a convolution block attention module (CBAM) is used for retinal image restoration.
A modified UNet is used for retinal vessel segmentation for the restored retinal images.
The proposed method can significantly reduce the degradation effects caused by out-of-focus blurring, color distortion, low, high, and uneven illumination.
arXiv Detail & Related papers (2022-09-09T10:47:20Z) - Image Quality Assessment: Learning to Rank Image Distortion Level [0.0]
We learn to compare the image quality of two registered images, with respect to a chosen distortion.
Our method takes advantage of the fact that at times, simulating image distortion and later evaluating its relative image quality, is easier than assessing its absolute value.
arXiv Detail & Related papers (2022-08-04T18:33:33Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model.
An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution.
The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
arXiv Detail & Related papers (2021-09-13T12:45:08Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z) - Residual Networks based Distortion Classification and Ranking for
Laparoscopic Image Quality Assessment [12.374294852377382]
Laparoscopic images and videos are often affected by different types of distortion like noise, smoke, blur and nonuniform illumination.
We propose in this paper to formulate the image quality assessment task as a multi-label classification problem taking into account both the type as well as the severity level (or rank) of distortions.
The obtained results on a laparoscopic image dataset show the efficiency of the proposed approach.
arXiv Detail & Related papers (2021-06-12T14:26:11Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
We show that our model performs well in measuring the similarity between restored and degraded images.
Our simultaneous restoration and enhancement framework generalizes well to real-world complicated degradation types.
arXiv Detail & Related papers (2021-03-04T13:19:50Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.