論文の概要: Unsupervised clustering of series using dynamic programming
- arxiv url: http://arxiv.org/abs/2101.09512v1
- Date: Sat, 23 Jan 2021 14:35:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-19 10:50:28.225061
- Title: Unsupervised clustering of series using dynamic programming
- Title(参考訳): 動的プログラミングによる系列の教師なしクラスタリング
- Authors: Karthigan Sinnathamby, Chang-Yu Hou, Lalitha Venkataramanan,
Vasileios-Marios Gkortsas, Fran\c{c}ois Fleuret
- Abstract要約: 各クラスタに存在するブロックが既知のモデルに対して整合的であるように、シリーズをセグメント化してクラスタ化したい。
データポイントがコヒーレントであるとは、同じパラメータを持つこのモデルを使って記述できる場合である。
我々は,クラスタ数,遷移数,ブロックの最小サイズに制約のある動的プログラミングに基づくアルゴリズムを設計した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We are interested in clustering parts of a given single multi-variate series
in an unsupervised manner. We would like to segment and cluster the series such
that the resulting blocks present in each cluster are coherent with respect to
a known model (e.g. physics model). Data points are said to be coherent if they
can be described using this model with the same parameters. We have designed an
algorithm based on dynamic programming with constraints on the number of
clusters, the number of transitions as well as the minimal size of a block such
that the clusters are coherent with this process. We present an use-case:
clustering of petrophysical series using the Waxman-Smits equation.
- Abstract(参考訳): 我々は、与えられた単一の多変量級数の一部を教師なしの方法でクラスタリングすることに興味を持っている。
各クラスタに存在するブロックが既知のモデル(例えば、)に対して整合的であるように、シリーズを分割してクラスタ化したい。
物理モデル)。
データポイントがコヒーレントであるとは、同じパラメータを持つこのモデルを使って記述できる場合である。
我々は,クラスタ数,遷移数,ブロックの最小サイズに制約を課した動的プログラミングに基づくアルゴリズムを設計した。
We present an use-case: clustering of petrophysical series using the Waxman-Smits equation。
関連論文リスト
- High-dimensional variable clustering based on sub-asymptotic maxima of a
weakly dependent random process [0.0]
本稿では,Asymsymotic Independent Block (AI-block)モデルと呼ばれる,変数クラスタリングのための新しいモデルのクラスを提案する。
このモデルのクラスは特定可能であり、つまり、分割の間に部分的な順序を持つ極大要素が存在し、統計的推測が可能であることを意味する。
論文 参考訳(メタデータ) (2023-02-02T08:24:26Z) - A parallelizable model-based approach for marginal and multivariate
clustering [0.0]
本稿では,モデルに基づくクラスタリングの頑健さを生かしたクラスタリング手法を提案する。
我々は、各マージンごとに異なる数のクラスタを持つことができる有限混合モデルを指定することで、この問題に対処する。
提案手法は、完全な(結合した)モデルベースのクラスタリング手法よりも、中程度から高次元の処理に適するだけでなく、計算的にも魅力的である。
論文 参考訳(メタデータ) (2022-12-07T23:54:41Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
本稿では,局所凸型ユーザコストを用いた個人化フェデレーション学習のためのアルゴリズム群を提案する。
提案するフレームワークは,異なるユーザのモデルの違いをペナル化する凸クラスタリングの一般化に基づいている。
論文 参考訳(メタデータ) (2022-02-01T19:25:31Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Local versions of sum-of-norms clustering [77.34726150561087]
本手法はボールモデルにおいて任意に閉じた球を分離できることを示す。
我々は、不連結連結集合のクラスタリングで発生する誤差に定量的な有界性を証明した。
論文 参考訳(メタデータ) (2021-09-20T14:45:29Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Vine copula mixture models and clustering for non-Gaussian data [0.0]
連続データのための新しいブドウパウラ混合モデルを提案する。
本研究では, モデルベースクラスタリングアルゴリズムにおいて, ベインコプラ混合モデルが他のモデルベースクラスタリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-05T16:04:26Z) - Unsupervised clustering of series using dynamic programming and neural
processes [0.0]
各クラスタに存在するブロックが、事前に定義されたモデル構造に対して一貫性があるように、シリーズをセグメント化してクラスタ化したい。
実行可能なモデルの統合を可能にし、クラスタリングタスクを支援するためにデータ駆動アプローチを1つの近似モデルに適応する一般的なフレームワークを確立することが有用である。
本研究では、arXiv:2101.09512で示されるアルゴリズムで求められる仮定を導出しながら、近似モデルを構築するためのニューラルネットワークプロセスの使用を検討する。
論文 参考訳(メタデータ) (2021-01-26T18:17:10Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z) - Blocked Clusterwise Regression [0.0]
我々は、各ユニットが複数の潜伏変数を持つことを可能にすることで、離散的非観測的不均一性に対する以前のアプローチを一般化する。
我々は,クラスタの過剰な数のクラスタリングの理論に寄与し,この設定に対する新たな収束率を導出する。
論文 参考訳(メタデータ) (2020-01-29T23:29:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。