Nonlinear Quantum Electrodynamics in Dirac materials
- URL: http://arxiv.org/abs/2101.09714v2
- Date: Fri, 17 Dec 2021 07:59:42 GMT
- Title: Nonlinear Quantum Electrodynamics in Dirac materials
- Authors: Aydin C. Keser, Yuli Lyanda-Geller, and Oleg P. Sushkov
- Abstract summary: We show that strong nonlinearity arises in Dirac materials at much lower fields.
We predict a new class of nonlinear magneto-electric effects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical electromagnetism is linear. However, fields can polarize the vacuum
Dirac sea, causing quantum nonlinear electromagnetic phenomena, e.g.,
scattering and splitting of photons, that occur only in very strong fields
found in neutron stars or heavy ion colliders.We show that strong nonlinearity
arises in Dirac materials at much lower fields $\sim 1\:\text{T}$, allowing us
to explore the nonperturbative, extremely high field limit of quantum
electrodynamics in solids. We explain recent experiments in a unified framework
and predict a new class of nonlinear magneto-electric effects, including a
magnetic enhancement of dielectric constant of insulators and a strong electric
modulation of magnetization. We propose experiments and discuss the
applications in novel materials.
Related papers
- Nonlinear Superconducting Magnetoelectric Effect [0.30723404270319693]
A supercurrent flow can induce a nonvanishing spin magnetization in noncentrosymmetric superconductors with spin-orbit interaction.
Here, we argue that a nonlinear superconducting magnetoelectric effect can naturally manifest in altermagnet/superconductor (ALM/SC) heterostructures.
Strikingly, we find NSM is the leading order magnetization response in ALM/SC heterostructures and survives even in the presence of centrosymmetry.
arXiv Detail & Related papers (2024-04-29T11:39:59Z) - Non-Uniform Magnetic Fields for Single-Electron Control [0.0]
A gauge-invariant formulation of the Wigner equation for general electromagnetic fields has been proposed.
We generalize this equation to include a general, non-uniform electric field and a linear, non-uniform magnetic field.
This has led to explore a new type of transport inside electronic waveguides based on snake trajectories.
arXiv Detail & Related papers (2023-11-10T19:05:54Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
We develop a theory of moir'e materials confined in a cavity consisting of thin polar van der Waals crystals.
Nontrivial quantum geometry of moir'e flat bands leads to electromagnetic vacuum dressing of electrons.
Results indicate that the cavity confinement enables one to control magnetic frustration of moir'e materials.
arXiv Detail & Related papers (2023-02-22T19:00:01Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Heisenberg-Uncertainty of Spatially-Gated Electromagnetic Fields [0.0]
Heisenberg uncertainty relation is derived for spatially-gated electric and magnetic field fluctuations.
Possible applications include nonlinear spectroscopy of nanostructures and optical cavities and chiral signals.
arXiv Detail & Related papers (2021-04-20T16:38:36Z) - Quantum theory of two-dimensional materials coupled to electromagnetic
resonators [0.0]
We present a microscopic quantum theory of light-matter interaction in pristine sheets of two-dimensional semiconductors coupled to localized electromagnetic resonators.
The light-matter interaction breaks the translation symmetry of excitons in the two-dimensional lattice, and we find that this symmetry-breaking interaction leads to the formation of a localized exciton state.
We quantify the influence of the environment and find that it is most pronounced for small lateral confinement length scales of the electromagnetic field in the resonator.
arXiv Detail & Related papers (2021-03-26T14:25:57Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.