Multi-Structure Deep Segmentation with Shape Priors and Latent
Adversarial Regularization
- URL: http://arxiv.org/abs/2101.10173v1
- Date: Mon, 25 Jan 2021 15:43:40 GMT
- Title: Multi-Structure Deep Segmentation with Shape Priors and Latent
Adversarial Regularization
- Authors: Arnaud Boutillon, Bhushan Borotikar, Christelle Pons, Val\'erie
Burdin, Pierre-Henri Conze
- Abstract summary: We propose a deep learning-based regularized segmentation method for multi-structure bone delineation in MR images.
Based on a newly devised shape code discriminator, our adversarial regularization scheme enforces the deep network to follow a learnt shape representation of the anatomy.
Our contribution is compared to state-of-the-art regularization methods on two pediatric musculoskeletal imaging datasets from ankle and shoulder joints.
- Score: 0.5249805590164902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic segmentation of the musculoskeletal system in pediatric magnetic
resonance (MR) images is a challenging but crucial task for morphological
evaluation in clinical practice. We propose a deep learning-based regularized
segmentation method for multi-structure bone delineation in MR images, designed
to overcome the inherent scarcity and heterogeneity of pediatric data. Based on
a newly devised shape code discriminator, our adversarial regularization scheme
enforces the deep network to follow a learnt shape representation of the
anatomy. The novel shape priors based adversarial regularization (SPAR)
exploits latent shape codes arising from ground truth and predicted masks to
guide the segmentation network towards more consistent and plausible
predictions. Our contribution is compared to state-of-the-art regularization
methods on two pediatric musculoskeletal imaging datasets from ankle and
shoulder joints.
Related papers
- Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration [22.157402663162877]
We propose a modality-agnostic structural representation learning method to learn discriminative and contrast-invariance deep structural image representations.
Our method is superior to the conventional local structural representation and statistical-based similarity measures in terms of discriminability and accuracy.
arXiv Detail & Related papers (2024-02-29T08:01:31Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
arXiv Detail & Related papers (2023-06-27T14:41:18Z) - Region-based Contrastive Pretraining for Medical Image Retrieval with
Anatomic Query [56.54255735943497]
Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR)
We introduce a novel Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR)
arXiv Detail & Related papers (2023-05-09T16:46:33Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Generalizable multi-task, multi-domain deep segmentation of sparse
pediatric imaging datasets via multi-scale contrastive regularization and
multi-joint anatomical priors [0.41998444721319217]
We propose to design a novel multi-task, multi-domain learning framework in which a single segmentation network is optimized over multiple datasets.
We evaluate our contributions for performing bone segmentation using three scarce and pediatric imaging datasets of the ankle, knee, and shoulder joints.
arXiv Detail & Related papers (2022-07-27T12:59:16Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - Multi-Task, Multi-Domain Deep Segmentation with Shared Representations
and Contrastive Regularization for Sparse Pediatric Datasets [0.5249805590164902]
We propose to train a segmentation model on multiple datasets, arising from different parts of the anatomy, in a multi-task and multi-domain learning framework.
The proposed segmentation network comprises shared convolutional filters, domain-specific batch normalization parameters that compute the respective dataset statistics.
We evaluate our contributions on two pediatric imaging datasets of the ankle and shoulder joints for bone segmentation.
arXiv Detail & Related papers (2021-05-21T12:26:05Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network [0.4588028371034407]
We propose a new pre-trained regularized convolutional encoder-decoder network for the challenging task of segmenting heterogeneous pediatric magnetic resonance (MR) images.
In order to obtain globally consistent predictions, we incorporate a shape priors based regularization, derived from a non-linear shape representation learnt by an auto-encoder.
The proposed method performed either better or at par with previously proposed approaches for Dice, sensitivity, specificity, maximum symmetric surface distance, average symmetric surface distance, and relative absolute volume difference metrics.
arXiv Detail & Related papers (2020-09-15T13:39:53Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.