論文の概要: Finding hidden-feature depending laws inside a data set and classifying
it using Neural Network
- arxiv url: http://arxiv.org/abs/2101.10427v1
- Date: Mon, 25 Jan 2021 21:37:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-14 21:25:06.029721
- Title: Finding hidden-feature depending laws inside a data set and classifying
it using Neural Network
- Title(参考訳): ニューラルネットワークを用いたデータセット内の隠れた機能依存法則の探索と分類
- Authors: Thilo Moshagen, Nihal Acharya Adde, Ajay Navilarekal Rajgopal
- Abstract要約: ニューラルネットワークのlogcosh損失関数は、異常値の重み付けを行わない絶対誤差損失関数の利点と、平均付近における連続微分の平均二乗誤差の利点を組み合わせるために開発された。
本研究は,logcosh損失を持つ人工ニューラルネットワークを用いてパラメータ-アウトカムサンプルセットのセット値マッピングの分岐を探索し,それらの分岐に従ってサンプルを分類する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The logcosh loss function for neural networks has been developed to combine
the advantage of the absolute error loss function of not overweighting outliers
with the advantage of the mean square error of continuous derivative near the
mean, which makes the last phase of learning easier. It is clear, and one
experiences it soon, that in the case of clustered data, an artificial neural
network with logcosh loss learns the bigger cluster rather than the mean of the
two. Even more so, the ANN, when used for regression of a set-valued function,
will learn a value close to one of the choices, in other words, one branch of
the set-valued function, while a mean-square-error NN will learn the value in
between. This work suggests a method that uses artificial neural networks with
logcosh loss to find the branches of set-valued mappings in parameter-outcome
sample sets and classifies the samples according to those branches.
- Abstract(参考訳): ニューラルネットワークのログコッシュ損失関数は、アウトプライヤを過重にしない絶対誤差損失関数の利点と、平均付近の連続微分の平均二乗誤差の利点を組み合わせるために開発されており、学習の最終段階を容易にする。
クラスタ化されたデータの場合、ログコッシュ損失のある人工ニューラルネットワークが2つの平均よりも大きなクラスタを学ぶことは明らかです。
さらに、ANNは、セット値関数の回帰に使用されるとき、その選択の1つに近い値、すなわち、セット値関数の1つの分岐を学習し、平均2乗誤差NNは、その間の値を学ぶ。
本研究は,logcosh損失を持つ人工ニューラルネットワークを用いてパラメータ-アウトカムサンプルセットのセット値マッピングの分岐を探索し,それらの分岐に従ってサンプルを分類する手法を提案する。
関連論文リスト
- On Excess Risk Convergence Rates of Neural Network Classifiers [8.329456268842227]
本稿では,ニューラルネットワークを用いた2値分類におけるプラグイン分類器の性能を,その過大なリスクによって測定した。
ニューラルネットワークの推定と近似特性を分析し,次元自由で均一な収束率を求める。
論文 参考訳(メタデータ) (2023-09-26T17:14:10Z) - A new approach to generalisation error of machine learning algorithms:
Estimates and convergence [0.0]
本稿では,(一般化)誤差の推定と収束に対する新しいアプローチを提案する。
本研究の結果は,ニューラルネットワークの構造的仮定を伴わない誤差の推定を含む。
論文 参考訳(メタデータ) (2023-06-23T20:57:31Z) - Alternate Loss Functions for Classification and Robust Regression Can Improve the Accuracy of Artificial Neural Networks [6.452225158891343]
本稿では,ニューラルネットワークのトレーニング速度と最終的な精度が,ニューラルネットワークのトレーニングに使用する損失関数に大きく依存することを示す。
様々なベンチマークタスクの性能を著しく向上させる2つの新しい分類損失関数を提案する。
論文 参考訳(メタデータ) (2023-03-17T12:52:06Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
本稿では,グラフニューラルネットワーク(GNN)における結合エッジモデルスパース学習の理論的特徴について述べる。
解析学的には、重要なノードをサンプリングし、最小のマグニチュードでプルーニングニューロンをサンプリングすることで、サンプルの複雑さを減らし、テスト精度を損なうことなく収束を改善することができる。
論文 参考訳(メタデータ) (2023-02-06T16:54:20Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
現代の機械学習モデルは、しばしば膨大な数のパラメータを使用し、通常、トレーニング損失がゼロになるように最適化されている。
ニューラルネットワークの2層構成において、これらの良質な過適合現象がどのように起こるかを検討する。
本稿では,2層型ReLUネットワーク補間器を極小最適学習率で実現可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T19:08:53Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - NN-EVCLUS: Neural Network-based Evidential Clustering [6.713564212269253]
本稿では,NN-EVCLUSと呼ばれるニューラルネットワークに基づく明確なクラスタリングアルゴリズムを提案する。
属性ベクトルから質量関数への写像を学習し、より類似した入力がより低い競合度を持つ質量関数の出力にマッピングされるようにする。
ネットワークは、すべてのオブジェクトまたはいくつかのオブジェクトペアの相違点と相反点の差を最小限に抑えるように訓練されている。
論文 参考訳(メタデータ) (2020-09-27T09:05:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。