論文の概要: Modeling opinion leader's role in the diffusion of innovation
- arxiv url: http://arxiv.org/abs/2101.11260v1
- Date: Wed, 27 Jan 2021 08:37:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 23:28:22.728526
- Title: Modeling opinion leader's role in the diffusion of innovation
- Title(参考訳): イノベーションの拡散における意見リーダーの役割のモデル化
- Authors: Natasa Vodopivec and Carole Adam and Jean-Pierre Chanteau
- Abstract要約: 我々は、イノベーションの拡散過程における世論指導者の役割をエージェントベースモデリングのために設計された、より表現力豊かなプラットフォームGAMAに翻訳する。
我々は,将来,社会科学の分野でモデルを作成する際に,選択したプラットフォームの新機能を活用することが,シミュレーション結果の説明力に有益であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The diffusion of innovations is an important topic for the consumer markets.
Early research focused on how innovations spread on the level of the whole
society. To get closer to the real world scenarios agent based models (ABM)
started focusing on individual-level agents. In our work we will translate an
existing ABM that investigates the role of opinion leaders in the process of
diffusion of innovations to a new, more expressive platform designed for agent
based modeling, GAMA. We will do it to show that taking advantage of new
features of the chosen platform should be encouraged when making models in the
field of social sciences in the future, because it can be beneficial for the
explanatory power of simulation results.
- Abstract(参考訳): イノベーションの拡散は消費者市場にとって重要なトピックである。
初期の研究は、イノベーションが社会全体のレベルにどのように広がったかに焦点を当てた。
現実のシナリオに近づくために、エージェントベースモデル(ABM)は個々のエージェントに焦点を当て始めた。
我々の研究では、革新の拡散過程における世論指導者の役割を調査する既存のABMを、エージェントベースモデリングのために設計された、より表現力豊かなプラットフォームGAMAに翻訳します。
シミュレーション結果の説明力に有益である可能性があるため、将来、社会科学の分野でモデルを作る際に選択したプラットフォームの新機能を活用することが奨励されるべきであることを示すためにそれを行います。
関連論文リスト
- Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
一般世界モデルは、人工知能(AGI)の実現への決定的な道のりを表現している
本調査では,世界モデルの最新動向を包括的に調査する。
我々は,世界モデルの課題と限界について検討し,今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-05-06T14:37:07Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
拡散モデルはコンピュータビジョン、オーディオ、強化学習、計算生物学において大きな成功を収めた。
経験的成功にもかかわらず、拡散モデルの理論は非常に限定的である。
本稿では,前向きな理論や拡散モデルの手法を刺激する理論的露光について述べる。
論文 参考訳(メタデータ) (2024-04-11T14:07:25Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Generative AI in Vision: A Survey on Models, Metrics and Applications [0.0]
生成AIモデルは、現実的で多様なデータサンプルの作成を可能にすることで、さまざまな分野に革命をもたらした。
これらのモデルの中で、拡散モデルは高品質な画像、テキスト、オーディオを生成するための強力なアプローチとして現れている。
本稿では,AI拡散モデルとレガシモデルについて概観し,その基礎となる技術,異なる領域にわたる応用,課題について概説する。
論文 参考訳(メタデータ) (2024-02-26T07:47:12Z) - A Survey of Reasoning with Foundation Models [235.7288855108172]
推論は、交渉、医療診断、刑事捜査など、様々な現実世界の環境において重要な役割を担っている。
本稿では,推論に適応する基礎モデルを提案する。
次に、基礎モデルにおける推論能力の出現の背後にある潜在的な将来方向を掘り下げる。
論文 参考訳(メタデータ) (2023-12-17T15:16:13Z) - Towards the Unification of Generative and Discriminative Visual
Foundation Model: A Survey [30.528346074194925]
視覚基礎モデル(VFM)はコンピュータビジョンの基盤となる発展の触媒となっている。
本稿では,VFMの重要軌道を概説し,その拡張性と生成タスクの熟練性を強調した。
今後のイノベーションの重要な方向は、生成的および差別的パラダイムの融合である。
論文 参考訳(メタデータ) (2023-12-15T19:17:15Z) - Generative Agent-Based Modeling: Unveiling Social System Dynamics
through Coupling Mechanistic Models with Generative Artificial Intelligence [0.5898893619901381]
生成人工知能を用いた社会システムのフィードバックに富む計算モデルを構築する新たな機会について論じる。
GABM(Generative Agent-Based Models)と呼ばれるこのモデルでは、ChatGPTのような大きな言語モデルを用いて、社会的環境における人間の意思決定を表現している。
本研究では,人的相互作用の力学モデルと事前学習された大規模言語モデルとを結合することにより,人間の行動がシミュレーションモデルに組み込むことができるGABMケースを提案する。
論文 参考訳(メタデータ) (2023-09-20T16:43:05Z) - Learning to Operate in Open Worlds by Adapting Planning Models [12.513121330508477]
プランニングエージェントは、ドメインモデルがもはや正確に世界を表すことができない新しい状況で振る舞うことができない。
オープンな世界で活動するエージェントに対して,新規性の存在を検知し,ドメインモデルに効果的に適用するアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-24T21:04:16Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z) - Modeling, Visualization, and Analysis of African Innovation Performance [0.0]
我々は,イノベーションパフォーマンスの概念と出現,その定量化方法について論じる。
我々は、機械学習を用いてイノベーションのパフォーマンスをモデル化し、シンプルな機械学習技術を用いて、Global Innovation Indexから"Mobile App Creation Indicator"を分析し、予測する既存の文献を概説する。
論文 参考訳(メタデータ) (2020-08-18T12:16:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。