論文の概要: Decision Machines: An Extension of Decision Trees
- arxiv url: http://arxiv.org/abs/2101.11347v5
- Date: Sun, 2 Jun 2024 06:55:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 00:04:47.856877
- Title: Decision Machines: An Extension of Decision Trees
- Title(参考訳): 決定機械:決定木の拡張
- Authors: Jinxiong Zhang,
- Abstract要約: 予測と二分テストの依存関係を決定木に描きます。
決定木と誤り訂正出力コードとの接続を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Here is a compact representation of binary decision trees. We can explicitly draw the dependencies between prediction and binary tests in decision trees and construct a procedure to guide the input instance from the root to its exit leaf. And we provided a connection between decision trees and error-correcting output codes. Then we built a bridge from tree-based models to attention mechanisms.
- Abstract(参考訳): これは二分決定木のコンパクトな表現である。
我々は、決定ツリーにおける予測とバイナリテストの間の依存関係を明示的に描き、入力インスタンスをルートから出口の葉に導く手順を構築することができる。
そして、決定木と誤り訂正出力コードとの接続を提供します。
そして、木に基づくモデルからアテンションメカニズムへのブリッジを構築しました。
関連論文リスト
- Terminating Differentiable Tree Experts [77.2443883991608]
本稿では,変圧器と表現生成器の組み合わせを用いて木操作を学習するニューラルシンボリック微分木機械を提案する。
まず、専門家の混在を導入することで、各ステップで使用される一連の異なるトランスフォーマーレイヤを取り除きます。
また,モデルが自動生成するステップ数を選択するための新しい終端アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-02T08:45:38Z) - An Algorithmic Framework for Constructing Multiple Decision Trees by
Evaluating Their Combination Performance Throughout the Construction Process [1.8749305679160366]
決定木の組み合わせによる予測は機械学習に有効であることが知られている。
本稿では,決定木を同時に構築し,それらの組み合わせ性能を評価するアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-09T14:58:07Z) - Learning a Decision Tree Algorithm with Transformers [80.49817544396379]
本稿では,従来のアルゴリズムから出力されたフィルタを用いてトランスフォーマーモデルを用いて,分類のための強力な決定木を生成するメタトレーについて紹介する。
次にMetaTreeをトレーニングして、強力な一般化パフォーマンスを実現するツリーを生成します。
論文 参考訳(メタデータ) (2024-02-06T07:40:53Z) - Greedy Algorithm for Inference of Decision Trees from Decision Rule
Systems [0.0]
決定木と決定ルールシステムは属性、知識表現ツール、アルゴリズムとして重要な役割を果たす。
本稿では,逆変換問題について考察する。
本研究は,決定木全体を構築する代わりに,与えられた属性に対する決定木の操作をシミュレートする欲求時間アルゴリズムに焦点を当てる。
論文 参考訳(メタデータ) (2024-01-08T09:28:55Z) - TreeDQN: Learning to minimize Branch-and-Bound tree [78.52895577861327]
Branch-and-Boundは、Mixed Linear Programsという形で最適化タスクを解決するための便利なアプローチである。
解法の効率は、分割する変数を選択するのに使用される分岐に依存する。
分岐を効率的に学習できる強化学習法を提案する。
論文 参考訳(メタデータ) (2023-06-09T14:01:26Z) - Construction of Decision Trees and Acyclic Decision Graphs from Decision
Rule Systems [0.0]
本稿では,決定木を構成する複雑さと決定木を表す非周期決定グラフについて考察する。
決定木全体を構築しない可能性について論じるが、与えられた入力に対して、この木で計算経路を記述する。
論文 参考訳(メタデータ) (2023-05-02T18:40:48Z) - Structure-Unified M-Tree Coding Solver for MathWord Problem [57.825176412485504]
従来,数式表現の2次木構造を考慮に入れたモデルでは,性能が向上した。
本稿では、出力構造を統一するために、任意のM枝(M-tree)を持つ木を適用した構造統一M-Tree符号化(S-UMCr)を提案する。
広く使われているMAWPSとMath23Kデータセットの実験結果は、SUMC-rが複数の最先端モデルを上回るだけでなく、低リソース条件下でもはるかに優れた性能を発揮することを示した。
論文 参考訳(メタデータ) (2022-10-22T12:20:36Z) - METGEN: A Module-Based Entailment Tree Generation Framework for Answer
Explanation [59.33241627273023]
複数のモジュールと推論コントローラを備えたモジュールベースのEntailment Tree GENフレームワークMETGENを提案する。
質問に対して、METGENは、別々のモジュールで単一ステップのエンタテインメントを実行し、コントローラで推論フローを選択することで、エンタテインメントツリーを反復的に生成することができる。
実験の結果,METGENは従来の最先端モデルよりも9%のパラメータで優れていた。
論文 参考訳(メタデータ) (2022-05-05T12:06:02Z) - Yet Another Representation of Binary Decision Trees: A Mathematical Demonstration [0.0]
決定木はサイクルのない単純な計算グラフのように見える。
数値的な観点から、計算グラフの言語で決定木を表現する。
論文 参考訳(メタデータ) (2021-01-18T13:50:14Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
我々は,reDT(rerectified decision tree)と呼ばれる知識蒸留に基づく決定木拡張を提案する。
我々は,ソフトラベルを用いたトレーニングを可能にする標準決定木の分割基準と終了条件を拡張した。
次に,教師モデルから抽出したソフトラベルに基づいて,新しいジャックニフェ法を用いてReDTを訓練する。
論文 参考訳(メタデータ) (2020-08-21T10:45:25Z) - dtControl: Decision Tree Learning Algorithms for Controller
Representation [0.0]
決定木は証明可能な正確なコントローラを簡潔に表現するために使用することができる。
本稿では、メモリレスコントローラを決定木として表現するための簡易な合成ツールであるdtControlについて述べる。
論文 参考訳(メタデータ) (2020-02-12T17:13:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。