論文の概要: Modelling the Impact of Scandals: the case of the 2017 French
Presidential Election
- arxiv url: http://arxiv.org/abs/2101.11548v1
- Date: Wed, 27 Jan 2021 17:08:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 23:01:40.561388
- Title: Modelling the Impact of Scandals: the case of the 2017 French
Presidential Election
- Title(参考訳): スキャンダルの影響をモデル化する:2017年のフランス大統領選挙の場合
- Authors: Yassine Bouachrine and Carole Adam
- Abstract要約: 本稿では,2017年フランス大統領選挙に触発された大統領選挙のエージェントによるシミュレーションを提案する。
主な貢献は、選挙結果に対するスキャンダルやメディアのバッシングの影響を検討することである。
特に、有権者に投票する候補者がいないため、スキャンダルが選挙を棄権する可能性があることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes an agent-based simulation of a presidential election,
inspired by the French 2017 presidential election. The simulation is based on
data extracted from polls, media coverage, and Twitter. The main contribution
is to consider the impact of scandals and media bashing on the result of the
election. In particular, it is shown that scandals can lead to higher
abstention at the election, as voters have no relevant candidate left to vote
for. The simulation is implemented in Unity 3D and is available to play online.
- Abstract(参考訳): 本論文は、2017年フランス大統領選挙に触発された大統領選挙のエージェントベースシミュレーションを提案する。
シミュレーションは、ポーリング、メディアカバレッジ、およびTwitterから抽出されたデータに基づいています。
主な貢献は、選挙結果に対するスキャンダルやメディアのバッシングの影響を検討することである。
特に、有権者には投票する候補者がいないため、スキャンダルは選挙においてより高い棄権につながる可能性があることが示されている。
シミュレーションはUnity 3Dで実装されており、オンラインでプレイすることができる。
- 全文 参考訳へのリンク
関連論文リスト
- Expected Frequency Matrices of Elections: Computation, Geometry, and
Preference Learning [58.23459346724491]
我々は、Szufa et al.(AAMAS 2020)の「選挙マップ」アプローチを用いて、よく知られた投票分布を分析します。
分布の「スケルトン写像」を描き、その頑健さを評価し、その性質を分析する。
論文 参考訳(メタデータ) (2022-05-16T17:40:22Z) - Political Communities on Twitter: Case Study of the 2022 French
Presidential Election [14.783829037950984]
われわれは、2022年のフランス大統領選挙でTwitter上に形成された政治コミュニティを特定することを目指している。
われわれは、12万人のユーザーと6260万人のツイートを含む大規模なTwitterデータセットを作成し、選挙に関連するキーワードについて言及している。
ユーザのリツイートグラフ上でコミュニティ検出を行い、各コミュニティのスタンスを詳細に分析する。
論文 参考訳(メタデータ) (2022-04-15T12:18:16Z) - Demographic Confounding Causes Extreme Instances of Lifestyle Politics
on Facebook [73.37786708074361]
ライフスタイル政治の最も極端な例は、人種や民族のような人口層によって高度に構築されたものである。
リベラルな関心は電気自動車、プランテッド・ペアレントフード、リベラルな風刺であり、一方最も保守的な関心は共和党や保守的なコメンテーターだった。
論文 参考訳(メタデータ) (2022-01-17T16:48:00Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Predicting the 2020 US Presidential Election with Twitter [0.0]
ソーシャルメディアデータを利用した選挙予測は、選挙戦略に大きな影響を与える可能性がある。
本稿は、Twitterデータを用いた2020年アメリカ合衆国大統領選挙の分析・予測における過去の成功方法について考察する。
これはデータの不足による選挙予測の正確な方法であるかどうかについては不確定である。
論文 参考訳(メタデータ) (2021-07-19T14:59:25Z) - Characterizing Online Engagement with Disinformation and Conspiracies in
the 2020 U.S. Presidential Election [9.63004143218094]
ソーシャルメディアの永続的な操作は、2020年のアメリカ合衆国大統領選挙に対する懸念を増している。
2億2200万の選挙関連ツイートのデータセットを分析し,信頼できない(あるいは陰謀的)クレームから事実を分離するために,検出モデルを適用した。
我々は、信頼できない、陰謀的なツイートと、QAnon陰謀グループとのアカウントのエンゲージメントを、政治的傾倒とツイートタイプによって特徴づける。
論文 参考訳(メタデータ) (2021-07-17T22:11:13Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Misinfo Belief Frames: A Case Study on Covid & Climate News [49.979419711713795]
読者がニュースの信頼性や誤った情報の影響をどのように認識するかを理解するための形式主義を提案する。
23.5kの見出しに66kの推論データセットであるMisinfo Belief Frames (MBF) corpusを紹介する。
大規模言語モデルを用いて誤情報フレームを予測した結果,機械生成推論がニュース見出しに対する読者の信頼に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2021-04-18T09:50:11Z) - Predicting Propensity to Vote with Machine Learning [0.0]
機械学習は、個人が過去の行動や属性から投票する確率を推測することを可能にすることを実証する。
これは、投票者のアウトリーチ、投票者教育、投票者獲得キャンペーン(GOVT)のマイクロターゲット化に有用である。
論文 参考訳(メタデータ) (2021-02-02T15:04:39Z) - Deepfakes and the 2020 US elections: what (did not) happen [0.0]
この論文では、悪意のある政治的なディープフェイクが2020年の米国の選挙に影響を与えるのを防ぐ条件を作り出したさまざまな種類の警告の乗算と共役であると信じています。
これらの警告から,4つの要因(ソーシャルネットワークの積極的な役割,新しい法律,人工知能へのアクセスの困難,社会の認知度向上)を特定した。
しかし、この式は、2020年の米国の場合に有効であることが証明されているが、それは他の政治的文脈で繰り返すことができると仮定することは正しくない。
論文 参考訳(メタデータ) (2021-01-22T13:10:47Z) - Political Posters Identification with Appearance-Text Fusion [49.55696202606098]
外観特徴とテキストベクトルを効率的に活用し, 政治ポスターを高精度に分類する手法を提案する。
この作品の大半は、特定の政治イベントのプロモーションとして機能するように設計された政治ポスターに焦点を当てている。
論文 参考訳(メタデータ) (2020-12-19T16:14:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。