論文の概要: Making Responsible AI the Norm rather than the Exception
- arxiv url: http://arxiv.org/abs/2101.11832v2
- Date: Sun, 31 Jan 2021 08:23:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 22:29:10.054585
- Title: Making Responsible AI the Norm rather than the Exception
- Title(参考訳): 責任あるaiを例外ではなく規範にする
- Authors: Abhishek Gupta (Montreal AI Ethics Institute and Microsoft)
- Abstract要約: この報告書は、国家安全保障委員会(National Security Commission on Artificial Intelligence, NSCAI)に対する勧告である。
報告書は、責任あるAIは例外ではなくノルムを作るべきだという考えを中心にしている。
フレームワークは,(1)学習,知識,情報交換(LKIE),(2)責任AIの3つの方法,(3)経験的に駆動されるリスク優先化行列,(4)適切な複雑性レベルを達成することから構成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report prepared by the Montreal AI Ethics Institute provides
recommendations in response to the National Security Commission on Artificial
Intelligence (NSCAI) Key Considerations for Responsible Development and
Fielding of Artificial Intelligence document. The report centres on the idea
that Responsible AI should be made the Norm rather than an Exception. It does
so by utilizing the guiding principles of: (1) alleviating friction in existing
workflows, (2) empowering stakeholders to get buy-in, and (3) conducting an
effective translation of abstract standards into actionable engineering
practices. After providing some overarching comments on the document from the
NSCAI, the report dives into the primary contribution of an actionable
framework to help operationalize the ideas presented in the document from the
NSCAI. The framework consists of: (1) a learning, knowledge, and information
exchange (LKIE), (2) the Three Ways of Responsible AI, (3) an
empirically-driven risk-prioritization matrix, and (4) achieving the right
level of complexity. All components reinforce each other to move from
principles to practice in service of making Responsible AI the norm rather than
the exception.
- Abstract(参考訳): モントリオールAI倫理研究所が作成したこのレポートは、人工知能に関する国家安全保障委員会(National Security Commission on Artificial Intelligence (NSCAI) Key considerations for Responsible Development and Fielding of Artificial Intelligence documentに応答して推奨している。
報告書は、責任あるAIは例外ではなくノルムを作るべきだという考えを中心にしている。
それは、(1)既存のワークフローの摩擦を軽減する、(2)利害関係者に購入を許可する、(3)抽象的な標準を実行可能なエンジニアリングプラクティスに効果的な変換を行う、というガイド原則を活用することによって実現される。
NSCAIからドキュメントに関する包括的なコメントを提供した後、レポートは、NSCAIから文書に提示されたアイデアを運用するのに役立つ、実行可能なフレームワークの主な貢献について掘り下げる。
フレームワークは,(1)学習,知識,情報交換(LKIE),(2)責任AIの3つの方法,(3)経験的に駆動されるリスク優先化行列,(4)適切な複雑性レベルを達成することから構成される。
すべてのコンポーネントは相互に強化され、Responsible AIを例外ではなく規範とする上での原則から実践へと移行する。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Developing trustworthy AI applications with foundation models [0.8005355048487703]
AIアプリケーションの信頼性は最近の研究の対象であり、EUが最近導入したAIレギュレーションにも対処されている。
テキスト、音声、画像処理の分野における基礎モデルは、AIアプリケーションを開発するための全く新しい可能性を提供します。
このホワイトペーパーは、基礎モデルで開発されたAIアプリケーションの信頼性をどのように評価し、確実にするかを示す。
論文 参考訳(メタデータ) (2024-05-08T10:08:45Z) - A Knowledge-Injected Curriculum Pretraining Framework for Question Answering [70.13026036388794]
本稿では,知識に基づく質問応答タスクの総合的なKG学習と活用を実現するための一般知識注入型カリキュラム事前学習フレームワーク(KICP)を提案する。
KIモジュールはまずKG中心の事前学習コーパスを生成してLMに知識を注入し、プロセスを3つの重要なステップに一般化する。
KAモジュールは、アダプタを備えたLMで生成されたコーパスから知識を学習し、元の自然言語理解能力を維持できる。
CRモジュールは人間の推論パターンに従って3つのコーパスを構築する。
論文 参考訳(メタデータ) (2024-03-11T03:42:03Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
ハイレベルなAI倫理原則と、AI専門家のための低レベルな具体的なプラクティスの間には、大きなギャップがある。
我々は、理論と実践のギャップを埋めるために設計された、信頼に値するAIのための新しい総合的なフレームワークを開発する。
私たちの目標は、AIプロフェッショナルが信頼できるAIの倫理的側面を確実にナビゲートできるようにすることです。
論文 参考訳(メタデータ) (2024-02-08T01:05:16Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - Report of the 1st Workshop on Generative AI and Law [78.62063815165968]
本報告では、生成AIと法に関する第1回ワークショップ(GenLaw)の開催状況について述べる。
コンピュータサイエンスと法学の実践者や学者の学際的なグループが集まり、ジェネレーティブAI法がもたらす技術的、教義的、政策上の課題について議論した。
論文 参考訳(メタデータ) (2023-11-11T04:13:37Z) - Towards Implementing Responsible AI [22.514717870367623]
我々は,AIシステムの設計と開発において,ソフトウェア工学で使用されるプロセスに適応する4つの側面を提案する。
健全な発見は、AIシステム設計と開発、ソフトウェアエンジニアリングで使用されるプロセスの適応の4つの側面をカバーしている。
論文 参考訳(メタデータ) (2022-05-09T14:59:23Z) - Accountability in AI: From Principles to Industry-specific Accreditation [4.033641609534416]
最近のAI関連のスキャンダルは、AIのアカウンタビリティに注目を向けている。
本稿では2つの貢献をするために公共政策とガバナンスから文献を引用する。
論文 参考訳(メタデータ) (2021-10-08T16:37:11Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Actionable Principles for Artificial Intelligence Policy: Three Pathways [0.0]
本稿では,AIのための行動原理開発のための新しい枠組みを提案する。
このアプローチは、政策プロセスにおける実践性を高めるための方法論的要素におけるAI倫理原則と家庭の関係を認識している。
論文 参考訳(メタデータ) (2021-02-24T16:57:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。