論文の概要: Toward Effective AI Governance: A Review of Principles
- arxiv url: http://arxiv.org/abs/2505.23417v1
- Date: Thu, 29 May 2025 13:07:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.861213
- Title: Toward Effective AI Governance: A Review of Principles
- Title(参考訳): 効果的なAIガバナンスに向けて - 原則のレビュー
- Authors: Danilo Ribeiro, Thayssa Rocha, Gustavo Pinto, Bruno Cartaxo, Marcelo Amaral, Nicole Davila, Ana Camargo,
- Abstract要約: 本研究の目的は、AIガバナンスに関する二次文献において、どのフレームワーク、原則、メカニズム、ステークホルダーの役割が強調されているかを特定することである。
最も引用されているフレームワークは、EU AI ActとNIST RMFである。
- 参考スコア(独自算出の注目度): 2.5411385112104448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) governance is the practice of establishing frameworks, policies, and procedures to ensure the responsible, ethical, and safe development and deployment of AI systems. Although AI governance is a core pillar of Responsible AI, current literature still lacks synthesis across such governance frameworks and practices. Objective: To identify which frameworks, principles, mechanisms, and stakeholder roles are emphasized in secondary literature on AI governance. Method: We conducted a rapid tertiary review of nine peer-reviewed secondary studies from IEEE and ACM (20202024), using structured inclusion criteria and thematic semantic synthesis. Results: The most cited frameworks include the EU AI Act and NIST RMF; transparency and accountability are the most common principles. Few reviews detail actionable governance mechanisms or stakeholder strategies. Conclusion: The review consolidates key directions in AI governance and highlights gaps in empirical validation and inclusivity. Findings inform both academic inquiry and practical adoption in organizations.
- Abstract(参考訳): 人工知能(AI)ガバナンスは、AIシステムの責任、倫理的、安全な開発と展開を保証するためのフレームワーク、ポリシー、手続きを確立するプラクティスである。
AIガバナンスは、Responsible AIの中核的な柱であるが、現在の文献には、そのようなガバナンスフレームワークやプラクティス間の合成が欠けている。
目的:AIガバナンスに関する二次文献では、どのフレームワーク、原則、メカニズム、ステークホルダーの役割が強調されているかを特定する。
方法: IEEE と ACM (20202024) による9つのピアレビューセカンダリ研究を, 構造化包含条件と意味論的セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティクスを用いて, 迅速に第3次レビューを行った。
結果: 最も引用されているフレームワークは、EU AI ActとNIST RMFである。
実行可能なガバナンスメカニズムやステークホルダ戦略を詳細にレビューする人はほとんどいません。
結論: このレビューはAIガバナンスにおける重要な方向性を強化し、実証的な検証とインクリシティのギャップを強調します。
発見は、学術的な調査と組織における実践的採用の両方を知らせる。
関連論文リスト
- Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
本稿では,信頼できるAIシステムを育成する上での,AI開発者,規制当局,ユーザ,メディア間の相互作用について検討する。
進化的ゲーム理論と大言語モデル(LLM)を用いて、異なる規制体制下でこれらのアクター間の戦略的相互作用をモデル化する。
論文 参考訳(メタデータ) (2025-03-12T21:39:38Z) - AI and the Transformation of Accountability and Discretion in Urban Governance [1.9152655229960793]
この研究は洞察を合成し、意思決定プロセスにおける責任あるAI統合のための指針原則を提案する。
分析によると、AIは単に判断を制限したり、強化したりするのではなく、制度レベルで再配布する。
同時に管理の監督を強化し、意思決定の整合性を高め、運用効率を向上させることができる。
論文 参考訳(メタデータ) (2025-02-18T18:11:39Z) - Responsible Artificial Intelligence Systems: A Roadmap to Society's Trust through Trustworthy AI, Auditability, Accountability, and Governance [37.10526074040908]
本稿では, 包括的観点から, 責任あるAIシステムの概念を考察する。
論文の最終目標は、責任あるAIシステムの設計におけるロードマップの提案である。
論文 参考訳(メタデータ) (2025-02-04T14:47:30Z) - The Fundamental Rights Impact Assessment (FRIA) in the AI Act: Roots, legal obligations and key elements for a model template [55.2480439325792]
基本権利影響評価(FRIA)の理論的・方法論的検討における既存のギャップを埋めることを目的とする。
この記事では、FRIAのモデルテンプレートの主要なビルディングブロックについて概説する。
これは、AIが人権と完全に整合していることを保証するために、他の国家および国際規制イニシアチブの青写真として機能する。
論文 参考訳(メタデータ) (2024-11-07T11:55:55Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Responsible AI Governance: A Systematic Literature Review [8.318630741859113]
本稿では,AIガバナンスに関する既存の文献を検討することを目的とする。
WHOはAIシステムのガバナンスに責任を持ち、WHAT要素は管理されており、WHENガバナンスはAI開発ライフサイクル内で発生し、HOWはフレームワーク、ツール、標準、ポリシー、モデルといった様々なメカニズムによって実行される。
本研究の成果は,RAI原則に沿った包括的ガバナンスモデルの研究・開発の基礎となるものである。
論文 参考訳(メタデータ) (2023-12-18T05:22:36Z) - Accountability in AI: From Principles to Industry-specific Accreditation [4.033641609534416]
最近のAI関連のスキャンダルは、AIのアカウンタビリティに注目を向けている。
本稿では2つの貢献をするために公共政策とガバナンスから文献を引用する。
論文 参考訳(メタデータ) (2021-10-08T16:37:11Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Actionable Principles for Artificial Intelligence Policy: Three Pathways [0.0]
本稿では,AIのための行動原理開発のための新しい枠組みを提案する。
このアプローチは、政策プロセスにおける実践性を高めるための方法論的要素におけるAI倫理原則と家庭の関係を認識している。
論文 参考訳(メタデータ) (2021-02-24T16:57:35Z) - AI Governance for Businesses [2.072259480917207]
データを有効に活用し、AI関連のコストとリスクを最小限にすることで、AIを活用することを目指している。
この作業では、AIプロダクトをシステムとみなし、機械学習(ML)モデルによって(トレーニング)データを活用する重要な機能が提供される。
我々のフレームワークは、AIガバナンスを4次元に沿ってデータガバナンス、(ML)モデル、(AI)システムに分解します。
論文 参考訳(メタデータ) (2020-11-20T22:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。