An Explainable AI System for Automated COVID-19 Assessment and Lesion
Categorization from CT-scans
- URL: http://arxiv.org/abs/2101.11943v1
- Date: Thu, 28 Jan 2021 11:47:35 GMT
- Title: An Explainable AI System for Automated COVID-19 Assessment and Lesion
Categorization from CT-scans
- Authors: Matteo Pennisi, Isaak Kavasidis, Concetto Spampinato, Vincenzo
Schinin\`a, Simone Palazzo, Francesco Rundo, Massimo Cristofaro, Paolo
Campioni, Elisa Pianura, Federica Di Stefano, Ada Petrone, Fabrizio
Albarello, Giuseppe Ippolito, Salvatore Cuzzocrea, Sabrina Conoci
- Abstract summary: COVID-19 infection caused by SARS-CoV-2 pathogen is a catastrophic pandemic outbreak all over the world.
We propose an AI-powered pipeline, based on the deep-learning paradigm, for automated COVID-19 detection and lesion categorization from CT scans.
- Score: 8.694504007704994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: COVID-19 infection caused by SARS-CoV-2 pathogen is a catastrophic pandemic
outbreak all over the world with exponential increasing of confirmed cases and,
unfortunately, deaths. In this work we propose an AI-powered pipeline, based on
the deep-learning paradigm, for automated COVID-19 detection and lesion
categorization from CT scans. We first propose a new segmentation module aimed
at identifying automatically lung parenchyma and lobes. Next, we combined such
segmentation network with classification networks for COVID-19 identification
and lesion categorization. We compare the obtained classification results with
those obtained by three expert radiologists on a dataset consisting of 162 CT
scans. Results showed a sensitivity of 90\% and a specificity of 93.5% for
COVID-19 detection, outperforming those yielded by the expert radiologists, and
an average lesion categorization accuracy of over 84%. Results also show that a
significant role is played by prior lung and lobe segmentation that allowed us
to enhance performance by over 20 percent points. The interpretation of the
trained AI models, moreover, reveals that the most significant areas for
supporting the decision on COVID-19 identification are consistent with the
lesions clinically associated to the virus, i.e., crazy paving, consolidation
and ground glass. This means that the artificial models are able to
discriminate a positive patient from a negative one (both controls and patients
with interstitial pneumonia tested negative to COVID) by evaluating the
presence of those lesions into CT scans. Finally, the AI models are integrated
into a user-friendly GUI to support AI explainability for radiologists, which
is publicly available at http://perceivelab.com/covid-ai.
Related papers
- Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
This paper presents a domain knowledge-based pipeline for extracting regions of infection in COVID-19 patients.
The severity of the infection is then classified into different categories using an ensemble of three machine-learning models.
The proposed system was evaluated on a validation dataset in the AI-Enabled Medical Image Analysis Workshop and COVID-19 Diagnosis Competition.
arXiv Detail & Related papers (2023-03-13T13:59:47Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
During pandemic era, visual assessment and quantification of COVID-19 lung lesions by expert radiologists become expensive and prone to error.
This paper introduces an open access COVID-19 CT segmentation dataset containing 433 CT images from 82 patients that have been annotated by an expert radiologist.
A Deep Neural Network (DNN)-based framework is proposed, referred to as the COVID-Rate, that autonomously segments lung abnormalities associated with COVID-19 from chest CT scans.
arXiv Detail & Related papers (2021-07-04T03:19:43Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
We propose a novel residual network to automatically identify COVID-19 from other common pneumonia and normal people using CT images.
Our method can differentiate COVID-19 from the other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity, 95.26% F1-score, and an area under the receiver operating characteristic curve (AUC) of 0.99.
arXiv Detail & Related papers (2021-05-14T11:59:47Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - COVID-FACT: A Fully-Automated Capsule Network-based Framework for
Identification of COVID-19 Cases from Chest CT scans [29.327290778950324]
We propose a two-stage fully-automated framework for identification of COVID-19 positive cases referred to as the "COVID-FACT"
COVID-FACT detects slices with infection, and identifies positive COVID-19 cases using an in-house CT scan dataset.
Based on our experiments, COVID-FACT achieves an accuracy of 90.82%, a sensitivity of 94.55%, a specificity of 86.04%, and an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and annotation.
arXiv Detail & Related papers (2020-10-30T03:30:22Z) - Automated triage of COVID-19 from various lung abnormalities using chest
CT features [2.4956060473718407]
We propose a fully automated AI based system that takes as input chest CT scans and triages COVID-19 cases.
We produce multiple features, including lung and infections statistics, texture, shape and location, to train a machine learning based classifier.
We evaluated our system on a dataset of 2191 CT cases and demonstrated a robust solution with 90.8% sensitivity at 85.4% specificity with 94.0% ROC-AUC.
arXiv Detail & Related papers (2020-10-24T19:44:48Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.