Beating the Standard Quantum Limit under Ambient Conditions with
Solid-State Spins
- URL: http://arxiv.org/abs/2101.12048v1
- Date: Thu, 28 Jan 2021 15:04:49 GMT
- Title: Beating the Standard Quantum Limit under Ambient Conditions with
Solid-State Spins
- Authors: Tianyu Xie, Zhiyuan Zhao, Xi Kong, Wenchao Ma, Mengqi Wang, Xiangyu
Ye, Pei Yu, Zhiping Yang, Shaoyi Xu, Pengfei Wang, Ya Wang, Fazhan Shi, and
Jiangfeng Du
- Abstract summary: We show a full interferometer sequence beating the standard quantum limit () to the Heisenberg limit (HL)
We employ a hybrid multi-spin system, namely the nitrogen-vacancy (NV) defect in diamond.
The techniques used here are of fundamental importance for quantum sensing and computing, and naturally applicable to other solid-state spin systems.
- Score: 14.837590652322564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precision measurement plays a crucial role in all fields of science. The use
of entangled sensors in quantum metrology improves the precision limit from the
standard quantum limit (SQL) to the Heisenberg limit (HL). To date, most
experiments beating the SQL are performed on the sensors which are well
isolated under extreme conditions. However, it has not been realized in
solid-state spin systems at ambient conditions, owing to its intrinsic
complexity for the preparation and survival of pure and entangled quantum
states. Here we show a full interferometer sequence beating the SQL by
employing a hybrid multi-spin system, namely the nitrogen-vacancy (NV) defect
in diamond. The interferometer sequence starts from a deterministic and joint
initialization, undergoes entanglement and disentanglement of multiple spins,
and ends up with projective measurement. In particular, the deterministic and
joint initialization of NV negative state, NV electron spin, and two nuclear
spins is realized at room temperature for the first time. By means of optimal
control, non-local gates are implemented with an estimated fidelity above the
threshold for fault-tolerant quantum computation. With these techniques
combined, we achieve two-spin interference with a phase sensitivity of 1.79 \pm
0.06 dB beyond the SQL and three-spin 2.77 \pm 0.10 dB. Moreover, the
deviations from the HL induced by experimental imperfections are completely
accountable. The techniques used here are of fundamental importance for quantum
sensing and computing, and naturally applicable to other solid-state spin
systems.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Entanglement-Enhanced Matter-Wave Interferometry in a High-Finesse
Cavity [0.0]
Entanglement is a fundamental resource that allows quantum sensors to surpass the standard quantum limit set by the quantum collapse of independent atoms.
Collective cavity-QED systems have succeeded in generating large amounts of directly observed entanglement involving the internal degrees of freedom of laser-cooled atomic ensembles.
An entangled state is for the first time successfully injected into a Mach-Zehnder light-pulse interferometer with $1.7+0.5_-0.5$ dB of directly observed metrological enhancement.
arXiv Detail & Related papers (2021-10-26T21:07:25Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Time-Reversal-Based Quantum Metrology with Many-Body Entangled States [0.5911087507716212]
In quantum metrology, entanglement represents a valuable resource that can be used to overcome the Standard Quantum Limit () that bounds the precision of sensors that operate with independent particles.
We implement an effective time-reversal protocol through a controlled sign change in an optically engineered many-body Hamiltonian.
Using a system of 350 neutral $171$Yb atoms, this signal amplification through time-reversed interaction protocol achieves the largest sensitivity improvement beyond the Standard Quantum Limit.
arXiv Detail & Related papers (2021-06-07T16:19:09Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.