論文の概要: Polynomial Trajectory Predictions for Improved Learning Performance
- arxiv url: http://arxiv.org/abs/2101.12616v1
- Date: Fri, 29 Jan 2021 14:58:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 12:43:05.181615
- Title: Polynomial Trajectory Predictions for Improved Learning Performance
- Title(参考訳): 学習性能向上のための多項軌道予測
- Authors: Ido Freeman, Kun Zhao, Anton Kummert
- Abstract要約: 自動車アプリケーションにおけるアクティブセーフティシステムの需要増加は、信頼性の高い短期的・中期的な予測の必要性を強調している。
本研究では,移動理解のためのニューラルネットワークの学習について,時間関数として自然形状の軌道を予測して学習することを提案する。
- 参考スコア(独自算出の注目度): 7.403237886965613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rising demand for Active Safety systems in automotive applications
stresses the need for a reliable short to mid-term trajectory prediction.
Anticipating the unfolding path of road users, one can act to increase the
overall safety. In this work, we propose to train artificial neural networks
for movement understanding by predicting trajectories in their natural form, as
a function of time. Predicting polynomial coefficients allows us to increased
accuracy and improve generalisation.
- Abstract(参考訳): 自動車アプリケーションにおけるアクティブセーフティシステムの需要の高まりは、信頼性の高い短期から中期の軌道予測の必要性を強調しています。
道路利用者の展開経路を予測すれば、全体の安全性を高めることができる。
本研究では,時間関数として自然な形状の軌道を予測することにより,運動理解のための人工ニューラルネットワークの訓練を提案する。
多項式係数の予測により精度が向上し、一般化が向上する。
関連論文リスト
- A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
軌道予測は、自動運転車における計画の安全性と効率に不可欠である。
現在のモデルでは、複雑な交通規則と潜在的な車両の動きを完全に捉えることができないことが多い。
本研究は, オフロード損失, 方向整合誤差, ダイバーシティ損失の3つの新しい損失関数を紹介する。
論文 参考訳(メタデータ) (2024-11-29T14:47:08Z) - Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
本稿では,AWTAの損失を最先端のモーション予測モデルと統合して性能を向上させる方法を示す。
我々の手法は、WTAを用いて訓練された任意の軌道予測モデルに容易に組み込むことができる。
論文 参考訳(メタデータ) (2024-09-17T13:26:17Z) - Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction [12.336412741837407]
本研究は,高度軌跡予測ネットワークとDOS予測モジュールを効果的に組み合わせた,DOS予測のための新しい手法を提案する。
本研究の革新的な貢献は、複雑なシナリオをナビゲートするための新しいDOS予測モデルの開発である。
論文 参考訳(メタデータ) (2024-02-29T17:36:39Z) - Automatic driving lane change safety prediction model based on LSTM [3.8749946206111603]
LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点がある。
その結果、従来のモデルベース手法と比較して、LSTMネットワークに基づく軌道予測法は、長い時間領域における軌道予測において明らかな利点があることが示された。
論文 参考訳(メタデータ) (2024-02-28T12:34:04Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) は、自動運転車における安全なエンドツーエンド運転のためのフレームワークである。
Catは、安全クリティカルなシナリオでエージェントを訓練することで、運転エージェントの安全性を継続的に改善することを目的としている。
猫は、訓練中のエージェントに対抗する敵シナリオを効果的に生成できる。
論文 参考訳(メタデータ) (2023-10-19T02:49:31Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
我々は、自動運転車と他の道路エージェントの両方の将来の軌道にまたがる分布について提案する。
推論中は、安全性と予測確率を考慮したコストを最小限に抑える計画軌道を選択する。
都市部の公道上での自動運転車の展開に成功し、快適さを損なうことなく安全に運転できることを確認しました。
論文 参考訳(メタデータ) (2022-11-03T20:16:24Z) - Early Lane Change Prediction for Automated Driving Systems Using
Multi-Task Attention-based Convolutional Neural Networks [8.60064151720158]
レーンチェンジ(英: Lane Change、LC)は、高速道路の運転において、安全上重要な手段の一つである。
自動走行システムの 安全で快適な運転には 確実な予測が不可欠だ
本稿では,LCの操作可能性と時間-車線変化を同時に推定する新しいマルチタスクモデルを提案する。
論文 参考訳(メタデータ) (2021-09-22T13:59:27Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Learning predictive representations in autonomous driving to improve
deep reinforcement learning [9.919972770800822]
新たな予測表現を用いた強化学習を自律運転に適用する。
新たな予測表現は、一般値関数(GVF)によって学習され、将来の車線中心性と道路角度の予測を提供する。
シミュレーションと実世界の両方の実験では、強化学習における予測表現が学習効率、制御の滑らかさ、およびエージェントが訓練中に表示されなかった道路への一般化を改善することが示されている。
論文 参考訳(メタデータ) (2020-06-26T17:17:47Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。