Demonstration and modelling of time-bin entangled photons from a quantum
dot in a nanowire
- URL: http://arxiv.org/abs/2102.00283v2
- Date: Thu, 5 May 2022 11:59:18 GMT
- Title: Demonstration and modelling of time-bin entangled photons from a quantum
dot in a nanowire
- Authors: Philipp Aumann, Maximilian Prilm\"uller, Florian Kappe, Laurin
Ostermann, Dan Dalacu, Philip J. Poole, Helmut Ritsch, Wolfgang Lechner,
Gregor Weihs
- Abstract summary: excitation of the biexciton state in an InAsP quantum dot by a phase-coherent pair of picosecond pulses allows preparing time-bin entangled pairs of photons via the biexciton-exciton cascade.
We show that this scheme can be implemented for a dot embedded in an InP nanowire.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Resonant excitation of the biexciton state in an InAsP quantum dot by a
phase-coherent pair of picosecond pulses allows preparing time-bin entangled
pairs of photons via the biexciton-exciton cascade. We show that this scheme
can be implemented for a dot embedded in an InP nanowire. The underlying
physical mechanisms can be represented and quantitatively analyzed by an
effective three-level open system master equation. Simulation parameters
including decay and intensity dependent dephasing rates are extracted from
experimental data, which in turn let us predict the resulting entanglement and
optimal operating conditions.
Related papers
- Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - Entanglement properties of a quantum-dot biexciton cascade in a chiral
nanophotonic waveguide [0.0]
We model the degree of entanglement through the concurrence of the two-photon entangled state in the presence of realistic experimental imperfections.
The analysis shows that the approach offers a promising platform for deterministically generating entanglement in integrated nanophotonic systems.
arXiv Detail & Related papers (2023-01-11T13:01:35Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Entangled photons from composite cascade emitters [0.0]
Entangled photons are crucial for quantum technologies.
generating arbitrary entangled photon states deterministically, efficiently, and with high fidelity remains a challenge.
arXiv Detail & Related papers (2021-10-23T00:30:34Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Efficient simulation of ultrafast quantum nonlinear optics with matrix
product states [0.0]
We develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes.
We observe the development of non-classical Wigner-function negativity in the solitonic mode and quantum corrections to the semiclassical dynamics of the pulse.
arXiv Detail & Related papers (2021-02-11T09:15:24Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.