Quantum rotations of nanoparticles
- URL: http://arxiv.org/abs/2102.00992v2
- Date: Thu, 25 Mar 2021 16:06:39 GMT
- Title: Quantum rotations of nanoparticles
- Authors: Benjamin A. Stickler and Klaus Hornberger and M. S. Kim
- Abstract summary: Rotations of microscale rigid bodies exhibit pronounced quantum phenomena that do not exist for their center-of-mass motion.
By levitating nanoparticles in ultra-high vacuum, researchers are developing a promising platform for observing and exploiting these quantum effects.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rotations of microscale rigid bodies exhibit pronounced quantum phenomena
that do not exist for their center-of-mass motion. By levitating nanoparticles
in ultra-high vacuum, researchers are developing a promising platform for
observing and exploiting these quantum effects in an unexplored mass and size
regime. Recent experimental and theoretical breakthroughs demonstrate exquisite
control of nanoscale rotations, setting the stage for the first table-top tests
of rotational superpositions and for the next generation of ultra-precise
torque sensors. Here, we review the experimental state of the art and discuss
promising routes towards macroscopic quantum rotations.
Related papers
- Systematic study of rotational decoherence with a trapped-ion planar
rotor [0.4188114563181614]
Quantum rotors promise unique advantages for quantum sensing, quantum simulation, and quantum information processing.
For future applications of quantum rotors, understanding their dynamics in the presence of ambient environments and decoherence will be critical.
We present measurements of fundamental scaling relationships for decoherence of a quantum planar rotor realized with two trapped ions.
arXiv Detail & Related papers (2023-10-20T05:52:04Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - On-demand assembly of optically-levitated nanoparticle arrays in vacuum [4.636346536834408]
In this work, we create a reconfigurable optically-levitated nanoparticles array in vacuum.
Our work provides a new platform for studying macroscopic many-body physics.
arXiv Detail & Related papers (2022-07-08T01:40:18Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Spin-mechanics with nitrogen-vacancy centers and trapped particles [0.0]
We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state.
Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that will enable these systems to unleash their full potential.
arXiv Detail & Related papers (2021-04-20T20:43:24Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Quantum sensing with nanoparticles for gravimetry; when bigger is better [0.0]
We describe experiments with optically levitated nanoparticles and their proposed utility for acceleration sensing.
Unique to the levitated nanoparticles platform is the ability to implement long-lived quantum spatial superpositions for enhanced gravimetry.
This follows a global trend in developing sensors, such as cold-atom interferometers, that exploit superposition or entanglement.
arXiv Detail & Related papers (2020-05-29T16:02:24Z) - Quantum electromechanics with levitated nanoparticles [0.0]
In contrast to atomic systems with discrete transitions, nanoparticles exhibit a practically continuous absorption spectrum.
We propose a pulsed scheme for the generation and read-out of motional quantum superpositions and entanglement between several levitated nanoparticles.
arXiv Detail & Related papers (2020-05-28T13:52:42Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.