論文の概要: MultiTalk: A Highly-Branching Dialog Testbed for Diverse Conversations
- arxiv url: http://arxiv.org/abs/2102.01263v1
- Date: Tue, 2 Feb 2021 02:29:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 05:26:22.558160
- Title: MultiTalk: A Highly-Branching Dialog Testbed for Diverse Conversations
- Title(参考訳): MultiTalk:多言語会話のための高分岐ダイアログ
- Authors: Yao Dou, Maxwell Forbes, Ari Holtzman, Yejin Choi
- Abstract要約: 会話対話文のコーパスであるMultiTalkデータセットについて述べる。
高分岐環境におけるダイアログ生成の研究に複数の貢献をしている。
我々の達成課題は心の問題の挑戦的理論であり、制御可能な生成課題である。
- 参考スコア(独自算出の注目度): 39.81965687032923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study conversational dialog in which there are many possible responses to
a given history. We present the MultiTalk Dataset, a corpus of over 320,000
sentences of written conversational dialog that balances a high branching
factor (10) with several conversation turns (6) through selective branch
continuation. We make multiple contributions to study dialog generation in the
highly branching setting. In order to evaluate a diverse set of generations, we
propose a simple scoring algorithm, based on bipartite graph matching, to
optimally incorporate a set of diverse references. We study multiple language
generation tasks at different levels of predictive conversation depth, using
textual attributes induced automatically from pretrained classifiers. Our
culminating task is a challenging theory of mind problem, a controllable
generation task which requires reasoning about the expected reaction of the
listener.
- Abstract(参考訳): 与えられた履歴に対する多くの可能な応答がある会話対話について研究する。
選択的なブランチ継続を通じて、高分岐率(10)と複数の会話回転(6)のバランスをとる320,000以上の会話ダイアログの文のコーパスであるMultiTalk Datasetを紹介します。
高度に分岐した環境で、対話生成の研究に複数貢献します。
多様な世代の世代を評価するために, 多様な参照のセットを最適に組み込むために, 二分グラフマッチングに基づく単純なスコアリングアルゴリズムを提案する。
事前学習された分類器から自動的に引き起こされるテキスト属性を用いて,予測会話深さの異なるレベルで複数の言語生成タスクについて検討した。
本研究の課題は,聴取者の期待する反応の推論を必要とする制御可能な生成タスクである心的問題の挑戦的理論である。
関連論文リスト
- Conversation Chronicles: Towards Diverse Temporal and Relational
Dynamics in Multi-Session Conversations [9.249662593315541]
我々は,長期会話設定を実装するために,新たに100万件の多セッション対話データセットであるConversation Chroniclesを導入する。
会話年代記の対話エピソードは、一貫性と一貫した相互作用を維持しながら、それらの特性を反映していることを示す。
また、時系列要約と対話生成モジュールで構成されるReBotと呼ばれる対話モデルを提案する。
論文 参考訳(メタデータ) (2023-10-20T11:06:21Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - Pragmatically Appropriate Diversity for Dialogue Evaluation [19.74618235525502]
言語プラグマティクス(英語版)は、会話の根底にある音声は、会話の各ターンに適切な応答のタイプを制限できると述べている。
本稿では,対話が多種多様な応答を生成・制約する程度に定義された,実用的に適切な多様性の概念を提案する。
論文 参考訳(メタデータ) (2023-04-06T01:24:18Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
本研究は,機械が物語の対話を理解・生成できるかどうかを探求する最初の研究である。
マスク付き対話生成と対話話者認識という2つの新しいタスクを提案する。
DialStoryの自動評価と手動評価で既存のモデルをテストすることで,提案課題の難しさを示す。
論文 参考訳(メタデータ) (2022-09-18T10:19:04Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z) - Diversifying Dialogue Generation with Non-Conversational Text [38.03510529185192]
非会話的テキストを活用することで対話生成を多様化する新しい視点を提案する。
我々は、フォーラムコメント、イディオム、本スニペットを含む複数の情報源から、大規模な非会話コーパスを収集する。
得られたモデルは、2つの会話データセット上でテストされ、コンテキストとの関連性を犠牲にすることなく、はるかに多様な応答を生成することが示されている。
論文 参考訳(メタデータ) (2020-05-09T02:16:05Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
マルチロール対話理解は、質問応答、行動分類、対話要約など、幅広い多様なタスクを含む。
対話コーパスは豊富に利用可能であるが、特定の学習タスクのためのラベル付きデータは非常に不足しており、高価である。
本研究では,教師なし事前学習タスクを用いた対話文脈表現学習について検討する。
論文 参考訳(メタデータ) (2020-02-27T04:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。